Spaces:
Running
on
Zero
Running
on
Zero
# Open Source Model Licensed under the Apache License Version 2.0 | |
# and Other Licenses of the Third-Party Components therein: | |
# The below Model in this distribution may have been modified by THL A29 Limited | |
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
# The below software and/or models in this distribution may have been | |
# modified by THL A29 Limited ("Tencent Modifications"). | |
# All Tencent Modifications are Copyright (C) THL A29 Limited. | |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
# except for the third-party components listed below. | |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
# in the repsective licenses of these third-party components. | |
# Users must comply with all terms and conditions of original licenses of these third-party | |
# components and must ensure that the usage of the third party components adheres to | |
# all relevant laws and regulations. | |
# For avoidance of doubts, Hunyuan 3D means the large language models and | |
# their software and algorithms, including trained model weights, parameters (including | |
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
# fine-tuning enabling code and other elements of the foregoing made publicly available | |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torchvision import transforms | |
from transformers import ( | |
CLIPVisionModelWithProjection, | |
CLIPVisionConfig, | |
Dinov2Model, | |
Dinov2Config, | |
) | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = np.arange(embed_dim // 2, dtype=np.float64) | |
omega /= embed_dim / 2. | |
omega = 1. / 10000 ** omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
return np.concatenate([emb_sin, emb_cos], axis=1) | |
class ImageEncoder(nn.Module): | |
def __init__( | |
self, | |
version=None, | |
config=None, | |
use_cls_token=True, | |
image_size=224, | |
**kwargs, | |
): | |
super().__init__() | |
if config is None: | |
self.model = self.MODEL_CLASS.from_pretrained(version) | |
else: | |
self.model = self.MODEL_CLASS(self.MODEL_CONFIG_CLASS.from_dict(config)) | |
self.model.eval() | |
self.model.requires_grad_(False) | |
self.use_cls_token = use_cls_token | |
self.size = image_size // 14 | |
self.num_patches = (image_size // 14) ** 2 | |
if self.use_cls_token: | |
self.num_patches += 1 | |
self.transform = transforms.Compose( | |
[ | |
transforms.Resize(image_size, transforms.InterpolationMode.BILINEAR, antialias=True), | |
transforms.CenterCrop(image_size), | |
transforms.Normalize( | |
mean=self.mean, | |
std=self.std, | |
), | |
] | |
) | |
def forward(self, image, mask=None, value_range=(-1, 1), **kwargs): | |
if value_range is not None: | |
low, high = value_range | |
image = (image - low) / (high - low) | |
image = image.to(self.model.device, dtype=self.model.dtype) | |
inputs = self.transform(image) | |
outputs = self.model(inputs) | |
last_hidden_state = outputs.last_hidden_state | |
if not self.use_cls_token: | |
last_hidden_state = last_hidden_state[:, 1:, :] | |
return last_hidden_state | |
def unconditional_embedding(self, batch_size, **kwargs): | |
device = next(self.model.parameters()).device | |
dtype = next(self.model.parameters()).dtype | |
zero = torch.zeros( | |
batch_size, | |
self.num_patches, | |
self.model.config.hidden_size, | |
device=device, | |
dtype=dtype, | |
) | |
return zero | |
class CLIPImageEncoder(ImageEncoder): | |
MODEL_CLASS = CLIPVisionModelWithProjection | |
MODEL_CONFIG_CLASS = CLIPVisionConfig | |
mean = [0.48145466, 0.4578275, 0.40821073] | |
std = [0.26862954, 0.26130258, 0.27577711] | |
class DinoImageEncoder(ImageEncoder): | |
MODEL_CLASS = Dinov2Model | |
MODEL_CONFIG_CLASS = Dinov2Config | |
mean = [0.485, 0.456, 0.406] | |
std = [0.229, 0.224, 0.225] | |
class DinoImageEncoderMV(DinoImageEncoder): | |
def __init__( | |
self, | |
version=None, | |
config=None, | |
use_cls_token=True, | |
image_size=224, | |
view_num=4, | |
**kwargs, | |
): | |
super().__init__(version, config, use_cls_token, image_size, **kwargs) | |
self.view_num = view_num | |
self.num_patches = self.num_patches | |
pos = np.arange(self.view_num, dtype=np.float32) | |
view_embedding = torch.from_numpy( | |
get_1d_sincos_pos_embed_from_grid(self.model.config.hidden_size, pos)).float() | |
view_embedding = view_embedding.unsqueeze(1).repeat(1, self.num_patches, 1) | |
self.view_embed = view_embedding.unsqueeze(0) | |
def forward(self, image, mask=None, value_range=(-1, 1), view_idxs=None): | |
if value_range is not None: | |
low, high = value_range | |
image = (image - low) / (high - low) | |
image = image.to(self.model.device, dtype=self.model.dtype) | |
bs, num_views, c, h, w = image.shape | |
image = image.view(bs * num_views, c, h, w) | |
inputs = self.transform(image) | |
outputs = self.model(inputs) | |
last_hidden_state = outputs.last_hidden_state | |
last_hidden_state = last_hidden_state.view( | |
bs, num_views, last_hidden_state.shape[-2], | |
last_hidden_state.shape[-1] | |
) | |
view_embedding = self.view_embed.to(last_hidden_state.dtype).to(last_hidden_state.device) | |
if view_idxs is not None: | |
assert len(view_idxs) == bs | |
view_embeddings = [] | |
for i in range(bs): | |
view_idx = view_idxs[i] | |
assert num_views == len(view_idx) | |
view_embeddings.append(self.view_embed[:, view_idx, ...]) | |
view_embedding = torch.cat(view_embeddings, 0).to(last_hidden_state.dtype).to(last_hidden_state.device) | |
if num_views != self.view_num: | |
view_embedding = view_embedding[:, :num_views, ...] | |
last_hidden_state = last_hidden_state + view_embedding | |
last_hidden_state = last_hidden_state.view(bs, num_views * last_hidden_state.shape[-2], | |
last_hidden_state.shape[-1]) | |
return last_hidden_state | |
def unconditional_embedding(self, batch_size, view_idxs=None, **kwargs): | |
device = next(self.model.parameters()).device | |
dtype = next(self.model.parameters()).dtype | |
zero = torch.zeros( | |
batch_size, | |
self.num_patches * len(view_idxs[0]), | |
self.model.config.hidden_size, | |
device=device, | |
dtype=dtype, | |
) | |
return zero | |
def build_image_encoder(config): | |
if config['type'] == 'CLIPImageEncoder': | |
return CLIPImageEncoder(**config['kwargs']) | |
elif config['type'] == 'DinoImageEncoder': | |
return DinoImageEncoder(**config['kwargs']) | |
elif config['type'] == 'DinoImageEncoderMV': | |
return DinoImageEncoderMV(**config['kwargs']) | |
else: | |
raise ValueError(f'Unknown image encoder type: {config["type"]}') | |
class DualImageEncoder(nn.Module): | |
def __init__( | |
self, | |
main_image_encoder, | |
additional_image_encoder, | |
): | |
super().__init__() | |
self.main_image_encoder = build_image_encoder(main_image_encoder) | |
self.additional_image_encoder = build_image_encoder(additional_image_encoder) | |
def forward(self, image, mask=None, **kwargs): | |
outputs = { | |
'main': self.main_image_encoder(image, mask=mask, **kwargs), | |
'additional': self.additional_image_encoder(image, mask=mask, **kwargs), | |
} | |
return outputs | |
def unconditional_embedding(self, batch_size, **kwargs): | |
outputs = { | |
'main': self.main_image_encoder.unconditional_embedding(batch_size, **kwargs), | |
'additional': self.additional_image_encoder.unconditional_embedding(batch_size, **kwargs), | |
} | |
return outputs | |
class SingleImageEncoder(nn.Module): | |
def __init__( | |
self, | |
main_image_encoder, | |
): | |
super().__init__() | |
self.main_image_encoder = build_image_encoder(main_image_encoder) | |
def forward(self, image, mask=None, **kwargs): | |
outputs = { | |
'main': self.main_image_encoder(image, mask=mask, **kwargs), | |
} | |
return outputs | |
def unconditional_embedding(self, batch_size, **kwargs): | |
outputs = { | |
'main': self.main_image_encoder.unconditional_embedding(batch_size, **kwargs), | |
} | |
return outputs | |