Spaces:
Running
on
Zero
Running
on
Zero
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
# except for the third-party components listed below. | |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
# in the repsective licenses of these third-party components. | |
# Users must comply with all terms and conditions of original licenses of these third-party | |
# components and must ensure that the usage of the third party components adheres to | |
# all relevant laws and regulations. | |
# For avoidance of doubts, Hunyuan 3D means the large language models and | |
# their software and algorithms, including trained model weights, parameters (including | |
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
# fine-tuning enabling code and other elements of the foregoing made publicly available | |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
import cv2 | |
import numpy as np | |
import torch | |
from PIL import Image | |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler | |
class Light_Shadow_Remover(): | |
def __init__(self, config): | |
self.device = config.device | |
self.cfg_image = 1.5 | |
self.cfg_text = 1.0 | |
pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( | |
config.light_remover_ckpt_path, | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
) | |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config) | |
pipeline.set_progress_bar_config(disable=True) | |
self.pipeline = pipeline.to(self.device, torch.float16) | |
def recorrect_rgb(self, src_image, target_image, alpha_channel, scale=0.95): | |
def flat_and_mask(bgr, a): | |
mask = torch.where(a > 0.5, True, False) | |
bgr_flat = bgr.reshape(-1, bgr.shape[-1]) | |
mask_flat = mask.reshape(-1) | |
bgr_flat_masked = bgr_flat[mask_flat, :] | |
return bgr_flat_masked | |
src_flat = flat_and_mask(src_image, alpha_channel) | |
target_flat = flat_and_mask(target_image, alpha_channel) | |
corrected_bgr = torch.zeros_like(src_image) | |
for i in range(3): | |
src_mean, src_stddev = torch.mean(src_flat[:, i]), torch.std(src_flat[:, i]) | |
target_mean, target_stddev = torch.mean(target_flat[:, i]), torch.std(target_flat[:, i]) | |
corrected_bgr[:, :, i] = torch.clamp((src_image[:, :, i] - scale * src_mean) * (target_stddev / src_stddev) + scale * target_mean, 0, 1) | |
src_mse = torch.mean((src_image - target_image) ** 2) | |
modify_mse = torch.mean((corrected_bgr - target_image) ** 2) | |
if src_mse < modify_mse: | |
corrected_bgr = torch.cat([src_image, alpha_channel], dim=-1) | |
else: | |
corrected_bgr = torch.cat([corrected_bgr, alpha_channel], dim=-1) | |
return corrected_bgr | |
def __call__(self, image): | |
image = image.resize((512, 512)) | |
if image.mode == 'RGBA': | |
image_array = np.array(image) | |
alpha_channel = image_array[:, :, 3] | |
erosion_size = 3 | |
kernel = np.ones((erosion_size, erosion_size), np.uint8) | |
alpha_channel = cv2.erode(alpha_channel, kernel, iterations=1) | |
image_array[alpha_channel == 0, :3] = 255 | |
image_array[:, :, 3] = alpha_channel | |
image = Image.fromarray(image_array) | |
image_tensor = torch.tensor(np.array(image) / 255.0).to(self.device) | |
alpha = image_tensor[:, :, 3:] | |
rgb_target = image_tensor[:, :, :3] | |
else: | |
image_tensor = torch.tensor(np.array(image) / 255.0).to(self.device) | |
alpha = torch.ones_like(image_tensor)[:, :, :1] | |
rgb_target = image_tensor[:, :, :3] | |
image = image.convert('RGB') | |
image = self.pipeline( | |
prompt="", | |
image=image, | |
generator=torch.manual_seed(42), | |
height=512, | |
width=512, | |
num_inference_steps=50, | |
image_guidance_scale=self.cfg_image, | |
guidance_scale=self.cfg_text, | |
).images[0] | |
image_tensor = torch.tensor(np.array(image)/255.0).to(self.device) | |
rgb_src = image_tensor[:,:,:3] | |
image = self.recorrect_rgb(rgb_src, rgb_target, alpha) | |
image = image[:,:,:3]*image[:,:,3:] + torch.ones_like(image[:,:,:3])*(1.0-image[:,:,3:]) | |
image = Image.fromarray((image.cpu().numpy()*255).astype(np.uint8)) | |
return image | |