Hunyuan3D-2mv / hy3dgen /texgen /utils /dehighlight_utils.py
ZeqiangLai's picture
update
6f34049
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import cv2
import numpy as np
import torch
from PIL import Image
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
class Light_Shadow_Remover():
def __init__(self, config):
self.device = config.device
self.cfg_image = 1.5
self.cfg_text = 1.0
pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(
config.light_remover_ckpt_path,
torch_dtype=torch.float16,
safety_checker=None,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
pipeline.set_progress_bar_config(disable=True)
self.pipeline = pipeline.to(self.device, torch.float16)
def recorrect_rgb(self, src_image, target_image, alpha_channel, scale=0.95):
def flat_and_mask(bgr, a):
mask = torch.where(a > 0.5, True, False)
bgr_flat = bgr.reshape(-1, bgr.shape[-1])
mask_flat = mask.reshape(-1)
bgr_flat_masked = bgr_flat[mask_flat, :]
return bgr_flat_masked
src_flat = flat_and_mask(src_image, alpha_channel)
target_flat = flat_and_mask(target_image, alpha_channel)
corrected_bgr = torch.zeros_like(src_image)
for i in range(3):
src_mean, src_stddev = torch.mean(src_flat[:, i]), torch.std(src_flat[:, i])
target_mean, target_stddev = torch.mean(target_flat[:, i]), torch.std(target_flat[:, i])
corrected_bgr[:, :, i] = torch.clamp((src_image[:, :, i] - scale * src_mean) * (target_stddev / src_stddev) + scale * target_mean, 0, 1)
src_mse = torch.mean((src_image - target_image) ** 2)
modify_mse = torch.mean((corrected_bgr - target_image) ** 2)
if src_mse < modify_mse:
corrected_bgr = torch.cat([src_image, alpha_channel], dim=-1)
else:
corrected_bgr = torch.cat([corrected_bgr, alpha_channel], dim=-1)
return corrected_bgr
@torch.no_grad()
def __call__(self, image):
image = image.resize((512, 512))
if image.mode == 'RGBA':
image_array = np.array(image)
alpha_channel = image_array[:, :, 3]
erosion_size = 3
kernel = np.ones((erosion_size, erosion_size), np.uint8)
alpha_channel = cv2.erode(alpha_channel, kernel, iterations=1)
image_array[alpha_channel == 0, :3] = 255
image_array[:, :, 3] = alpha_channel
image = Image.fromarray(image_array)
image_tensor = torch.tensor(np.array(image) / 255.0).to(self.device)
alpha = image_tensor[:, :, 3:]
rgb_target = image_tensor[:, :, :3]
else:
image_tensor = torch.tensor(np.array(image) / 255.0).to(self.device)
alpha = torch.ones_like(image_tensor)[:, :, :1]
rgb_target = image_tensor[:, :, :3]
image = image.convert('RGB')
image = self.pipeline(
prompt="",
image=image,
generator=torch.manual_seed(42),
height=512,
width=512,
num_inference_steps=50,
image_guidance_scale=self.cfg_image,
guidance_scale=self.cfg_text,
).images[0]
image_tensor = torch.tensor(np.array(image)/255.0).to(self.device)
rgb_src = image_tensor[:,:,:3]
image = self.recorrect_rgb(rgb_src, rgb_target, alpha)
image = image[:,:,:3]*image[:,:,3:] + torch.ones_like(image[:,:,:3])*(1.0-image[:,:,3:])
image = Image.fromarray((image.cpu().numpy()*255).astype(np.uint8))
return image