import logging import os from functools import wraps import torch def get_logger(name): logger = logging.getLogger(name) logger.setLevel(logging.INFO) console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') console_handler.setFormatter(formatter) logger.addHandler(console_handler) return logger logger = get_logger('hy3dgen.shapgen') class synchronize_timer: """ Synchronized timer to count the inference time of `nn.Module.forward`. Supports both context manager and decorator usage. Example as context manager: ```python with synchronize_timer('name') as t: run() ``` Example as decorator: ```python @synchronize_timer('Export to trimesh') def export_to_trimesh(mesh_output): pass ``` """ def __init__(self, name=None): self.name = name def __enter__(self): """Context manager entry: start timing.""" if os.environ.get('HY3DGEN_DEBUG', '0') == '1': self.start = torch.cuda.Event(enable_timing=True) self.end = torch.cuda.Event(enable_timing=True) self.start.record() return lambda: self.time def __exit__(self, exc_type, exc_value, exc_tb): """Context manager exit: stop timing and log results.""" if os.environ.get('HY3DGEN_DEBUG', '0') == '1': self.end.record() torch.cuda.synchronize() self.time = self.start.elapsed_time(self.end) if self.name is not None: logger.info(f'{self.name} takes {self.time} ms') def __call__(self, func): """Decorator: wrap the function to time its execution.""" @wraps(func) def wrapper(*args, **kwargs): with self: result = func(*args, **kwargs) return result return wrapper