# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import logging import os from functools import wraps import torch def get_logger(name): logger = logging.getLogger(name) logger.setLevel(logging.INFO) console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') console_handler.setFormatter(formatter) logger.addHandler(console_handler) return logger logger = get_logger('hy3dgen.shapgen') class synchronize_timer: """ Synchronized timer to count the inference time of `nn.Module.forward`. Supports both context manager and decorator usage. Example as context manager: ```python with synchronize_timer('name') as t: run() ``` Example as decorator: ```python @synchronize_timer('Export to trimesh') def export_to_trimesh(mesh_output): pass ``` """ def __init__(self, name=None): self.name = name def __enter__(self): """Context manager entry: start timing.""" if os.environ.get('HY3DGEN_DEBUG', '0') == '1': self.start = torch.cuda.Event(enable_timing=True) self.end = torch.cuda.Event(enable_timing=True) self.start.record() return lambda: self.time def __exit__(self, exc_type, exc_value, exc_tb): """Context manager exit: stop timing and log results.""" if os.environ.get('HY3DGEN_DEBUG', '0') == '1': self.end.record() torch.cuda.synchronize() self.time = self.start.elapsed_time(self.end) if self.name is not None: logger.info(f'{self.name} takes {self.time} ms') def __call__(self, func): """Decorator: wrap the function to time its execution.""" @wraps(func) def wrapper(*args, **kwargs): with self: result = func(*args, **kwargs) return result return wrapper def smart_load_model( model_path, subfolder, use_safetensors, variant, ): original_model_path = model_path # try local path base_dir = os.environ.get('HY3DGEN_MODELS', '~/.cache/hy3dgen') model_path = os.path.expanduser(os.path.join(base_dir, model_path, subfolder)) logger.info(f'Try to load model from local path: {model_path}') if not os.path.exists(model_path): logger.info('Model path not exists, try to download from huggingface') try: from huggingface_hub import snapshot_download # 只下载指定子目录 path = snapshot_download( repo_id=original_model_path, allow_patterns=[f"{subfolder}/*"], # 关键修改:模式匹配子文件夹 ) model_path = os.path.join(path, subfolder) # 保持路径拼接逻辑不变 except ImportError: logger.warning( "You need to install HuggingFace Hub to load models from the hub." ) raise RuntimeError(f"Model path {model_path} not found") except Exception as e: raise e if not os.path.exists(model_path): raise FileNotFoundError(f"Model path {original_model_path} not found") extension = 'ckpt' if not use_safetensors else 'safetensors' variant = '' if variant is None else f'.{variant}' ckpt_name = f'model{variant}.{extension}' config_path = os.path.join(model_path, 'config.yaml') ckpt_path = os.path.join(model_path, ckpt_name) return config_path, ckpt_path