# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import os import torch import torch.nn.functional as F scaled_dot_product_attention = F.scaled_dot_product_attention if os.environ.get('CA_USE_SAGEATTN', '0') == '1': try: from sageattention import sageattn except ImportError: raise ImportError('Please install the package "sageattention" to use this USE_SAGEATTN.') scaled_dot_product_attention = sageattn class CrossAttentionProcessor: def __call__(self, attn, q, k, v): out = scaled_dot_product_attention(q, k, v) return out class FlashVDMCrossAttentionProcessor: def __init__(self, topk=None): self.topk = topk def __call__(self, attn, q, k, v): if k.shape[-2] == 3072: topk = 1024 elif k.shape[-2] == 512: topk = 256 else: topk = k.shape[-2] // 3 if self.topk is True: q1 = q[:, :, ::100, :] sim = q1 @ k.transpose(-1, -2) sim = torch.mean(sim, -2) topk_ind = torch.topk(sim, dim=-1, k=topk).indices.squeeze(-2).unsqueeze(-1) topk_ind = topk_ind.expand(-1, -1, -1, v.shape[-1]) v0 = torch.gather(v, dim=-2, index=topk_ind) k0 = torch.gather(k, dim=-2, index=topk_ind) out = scaled_dot_product_attention(q, k0, v0) elif self.topk is False: out = scaled_dot_product_attention(q, k, v) else: idx, counts = self.topk start = 0 outs = [] for grid_coord, count in zip(idx, counts): end = start + count q_chunk = q[:, :, start:end, :] k0, v0 = self.select_topkv(q_chunk, k, v, topk) out = scaled_dot_product_attention(q_chunk, k0, v0) outs.append(out) start += count out = torch.cat(outs, dim=-2) self.topk = False return out def select_topkv(self, q_chunk, k, v, topk): q1 = q_chunk[:, :, ::50, :] sim = q1 @ k.transpose(-1, -2) sim = torch.mean(sim, -2) topk_ind = torch.topk(sim, dim=-1, k=topk).indices.squeeze(-2).unsqueeze(-1) topk_ind = topk_ind.expand(-1, -1, -1, v.shape[-1]) v0 = torch.gather(v, dim=-2, index=topk_ind) k0 = torch.gather(k, dim=-2, index=topk_ind) return k0, v0 class FlashVDMTopMCrossAttentionProcessor(FlashVDMCrossAttentionProcessor): def select_topkv(self, q_chunk, k, v, topk): q1 = q_chunk[:, :, ::30, :] sim = q1 @ k.transpose(-1, -2) # sim = sim.to(torch.float32) sim = sim.softmax(-1) sim = torch.mean(sim, 1) activated_token = torch.where(sim > 1e-6)[2] index = torch.unique(activated_token, return_counts=True)[0].unsqueeze(0).unsqueeze(0).unsqueeze(-1) index = index.expand(-1, v.shape[1], -1, v.shape[-1]) v0 = torch.gather(v, dim=-2, index=index) k0 = torch.gather(k, dim=-2, index=index) return k0, v0