# Open Source Model Licensed under the Apache License Version 2.0 # and Other Licenses of the Third-Party Components therein: # The below Model in this distribution may have been modified by THL A29 Limited # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. # The below software and/or models in this distribution may have been # modified by THL A29 Limited ("Tencent Modifications"). # All Tencent Modifications are Copyright (C) THL A29 Limited. # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import numpy as np import torch import torch.nn as nn from torchvision import transforms from transformers import ( CLIPVisionModelWithProjection, CLIPVisionConfig, Dinov2Model, Dinov2Config, ) def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2. omega = 1. / 10000 ** omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) return np.concatenate([emb_sin, emb_cos], axis=1) class ImageEncoder(nn.Module): def __init__( self, version=None, config=None, use_cls_token=True, image_size=224, **kwargs, ): super().__init__() if config is None: self.model = self.MODEL_CLASS.from_pretrained(version) else: self.model = self.MODEL_CLASS(self.MODEL_CONFIG_CLASS.from_dict(config)) self.model.eval() self.model.requires_grad_(False) self.use_cls_token = use_cls_token self.size = image_size // 14 self.num_patches = (image_size // 14) ** 2 if self.use_cls_token: self.num_patches += 1 self.transform = transforms.Compose( [ transforms.Resize(image_size, transforms.InterpolationMode.BILINEAR, antialias=True), transforms.CenterCrop(image_size), transforms.Normalize( mean=self.mean, std=self.std, ), ] ) def forward(self, image, mask=None, value_range=(-1, 1), **kwargs): if value_range is not None: low, high = value_range image = (image - low) / (high - low) image = image.to(self.model.device, dtype=self.model.dtype) inputs = self.transform(image) outputs = self.model(inputs) last_hidden_state = outputs.last_hidden_state if not self.use_cls_token: last_hidden_state = last_hidden_state[:, 1:, :] return last_hidden_state def unconditional_embedding(self, batch_size, **kwargs): device = next(self.model.parameters()).device dtype = next(self.model.parameters()).dtype zero = torch.zeros( batch_size, self.num_patches, self.model.config.hidden_size, device=device, dtype=dtype, ) return zero class CLIPImageEncoder(ImageEncoder): MODEL_CLASS = CLIPVisionModelWithProjection MODEL_CONFIG_CLASS = CLIPVisionConfig mean = [0.48145466, 0.4578275, 0.40821073] std = [0.26862954, 0.26130258, 0.27577711] class DinoImageEncoder(ImageEncoder): MODEL_CLASS = Dinov2Model MODEL_CONFIG_CLASS = Dinov2Config mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] class DinoImageEncoderMV(DinoImageEncoder): def __init__( self, version=None, config=None, use_cls_token=True, image_size=224, view_num=4, **kwargs, ): super().__init__(version, config, use_cls_token, image_size, **kwargs) self.view_num = view_num self.num_patches = self.num_patches pos = np.arange(self.view_num, dtype=np.float32) view_embedding = torch.from_numpy( get_1d_sincos_pos_embed_from_grid(self.model.config.hidden_size, pos)).float() view_embedding = view_embedding.unsqueeze(1).repeat(1, self.num_patches, 1) self.view_embed = view_embedding.unsqueeze(0) def forward(self, image, mask=None, value_range=(-1, 1), view_idxs=None): if value_range is not None: low, high = value_range image = (image - low) / (high - low) image = image.to(self.model.device, dtype=self.model.dtype) bs, num_views, c, h, w = image.shape image = image.view(bs * num_views, c, h, w) inputs = self.transform(image) outputs = self.model(inputs) last_hidden_state = outputs.last_hidden_state last_hidden_state = last_hidden_state.view( bs, num_views, last_hidden_state.shape[-2], last_hidden_state.shape[-1] ) view_embedding = self.view_embed.to(last_hidden_state.dtype).to(last_hidden_state.device) if view_idxs is not None: assert len(view_idxs) == bs view_embeddings = [] for i in range(bs): view_idx = view_idxs[i] assert num_views == len(view_idx) view_embeddings.append(self.view_embed[:, view_idx, ...]) view_embedding = torch.cat(view_embeddings, 0).to(last_hidden_state.dtype).to(last_hidden_state.device) if num_views != self.view_num: view_embedding = view_embedding[:, :num_views, ...] last_hidden_state = last_hidden_state + view_embedding last_hidden_state = last_hidden_state.view(bs, num_views * last_hidden_state.shape[-2], last_hidden_state.shape[-1]) return last_hidden_state def unconditional_embedding(self, batch_size, view_idxs=None, **kwargs): device = next(self.model.parameters()).device dtype = next(self.model.parameters()).dtype zero = torch.zeros( batch_size, self.num_patches * len(view_idxs[0]), self.model.config.hidden_size, device=device, dtype=dtype, ) return zero def build_image_encoder(config): if config['type'] == 'CLIPImageEncoder': return CLIPImageEncoder(**config['kwargs']) elif config['type'] == 'DinoImageEncoder': return DinoImageEncoder(**config['kwargs']) elif config['type'] == 'DinoImageEncoderMV': return DinoImageEncoderMV(**config['kwargs']) else: raise ValueError(f'Unknown image encoder type: {config["type"]}') class DualImageEncoder(nn.Module): def __init__( self, main_image_encoder, additional_image_encoder, ): super().__init__() self.main_image_encoder = build_image_encoder(main_image_encoder) self.additional_image_encoder = build_image_encoder(additional_image_encoder) def forward(self, image, mask=None, **kwargs): outputs = { 'main': self.main_image_encoder(image, mask=mask, **kwargs), 'additional': self.additional_image_encoder(image, mask=mask, **kwargs), } return outputs def unconditional_embedding(self, batch_size, **kwargs): outputs = { 'main': self.main_image_encoder.unconditional_embedding(batch_size, **kwargs), 'additional': self.additional_image_encoder.unconditional_embedding(batch_size, **kwargs), } return outputs class SingleImageEncoder(nn.Module): def __init__( self, main_image_encoder, ): super().__init__() self.main_image_encoder = build_image_encoder(main_image_encoder) def forward(self, image, mask=None, **kwargs): outputs = { 'main': self.main_image_encoder(image, mask=mask, **kwargs), } return outputs def unconditional_embedding(self, batch_size, **kwargs): outputs = { 'main': self.main_image_encoder.unconditional_embedding(batch_size, **kwargs), } return outputs