Spaces:
Running
on
L40S
Running
on
L40S
File size: 18,315 Bytes
258fd02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
from torch.utils.data import Dataset
from beartype.typing import Sequence, Callable, Optional, Dict, List
from beartype.door import is_bearable
import random
import os
from torchaudio.functional import resample
import torch
import typing as tp
from pathlib import Path
import torchaudio as ta
import torch.nn.functional as F
import soundfile
import numpy as np
import json
import yaml
import random
import librosa
from loguru import logger
import re
def _av_read(filepath, seek_time=0, duration=None):
if duration is not None:
sr = librosa.get_samplerate(filepath)
offset = seek_time
num_samples = int(duration * sr)
wav, _ = librosa.load(filepath, sr=sr, offset=offset, duration=duration)
else:
wav, sr = librosa.load(filepath, sr=None, offset=seek_time)
return wav, sr
def audio_read(filepath: tp.Union[str, Path], seek_time: float = 0.,
duration: float = -1., pad: bool = True) -> tp.Tuple[torch.Tensor, int]:
"""Read audio by picking the most appropriate backend tool based on the audio format.
Args:
filepath (str or Path): Path to audio file to read.
seek_time (float): Time at which to start reading in the file.
duration (float): Duration to read from the file. If set to -1, the whole file is read.
pad (bool): Pad output audio if not reaching expected duration.
Returns:
tuple of torch.Tensor, int: Tuple containing audio data and sample rate.
"""
fp = Path(filepath)
if fp.suffix in ['.flac', '.ogg']: # TODO: check if we can safely use av_read for .ogg
# There is some bug with ffmpeg and reading flac
info = soundfile.info(filepath)
frames = -1 if duration <= 0 else int(duration * info.samplerate)
frame_offset = int(seek_time * info.samplerate)
wav, sr = soundfile.read(filepath, start=frame_offset, frames=frames, dtype=np.float32)
assert info.samplerate == sr, f"Mismatch of sample rates {info.samplerate} {sr}"
wav = torch.from_numpy(wav).t().contiguous()
if len(wav.shape) == 1:
wav = torch.unsqueeze(wav, 0)
elif (
fp.suffix in ['.wav', '.mp3'] and fp.suffix[1:] in ta.utils.sox_utils.list_read_formats()
and duration <= 0 and seek_time == 0
):
# Torchaudio is faster if we load an entire file at once.
wav, sr = librosa.load(fp, sr=None, mono=True)
else:
wav, sr = _av_read(filepath, seek_time, duration)
if pad and duration > 0:
expected_frames = int(duration * sr)
wav = F.pad(torch.tensor(wav), (0, expected_frames - wav.shape[-1]))
if not isinstance(wav, torch.Tensor):
wav = torch.tensor(wav)
return wav, sr
def random_seek_read(filepath, duration):
if duration > 0:
total_duration = librosa.get_duration(path=filepath)
acceptable_start = max(0, total_duration - duration)
wav, sr = audio_read(filepath, random.uniform(0, acceptable_start), duration, pad=True)
else:
wav, sr = audio_read(filepath, 0, -1, pad=False)
return wav, sr
def safe_random_seek_read(filepath, duration, sample_rate):
try:
wav, sr = random_seek_read(filepath, duration)
if sr != sample_rate:
wav = resample(wav, sr, sample_rate)
sr = sample_rate
except Exception as e:
logger.error(f"Error reading {filepath}: {e}")
sr = sample_rate
wav = torch.zeros(sr * max(duration, 0), dtype=torch.float32)
return wav, sr
def read_jsonlike(path: os.PathLike):
#json or jsonl
if str(path).endswith(".json"):
with open(path, 'r', encoding='utf8') as f:
data = json.load(f)
return data
elif str(path).endswith(".jsonl"):
with open(path, 'r', encoding='utf8') as f:
data = [json.loads(line) for line in f.readlines()]
return data
else:
raise ValueError("Unknown file format")
dist_prob_map = {
1: (1.0,),
2: (0.5, 0.5),
3: (0.3, 0.4, 0.3),
4: (0.2, 0.3, 0.3, 0.2),
5: (0.2, 0.2, 0.3, 0.2, 0.1),
6: (0.1, 0.15, 0.2, 0.2, 0.2, 0.15),
7: (0.05, 0.1, 0.1, 0.2, 0.25, 0.2, 0.1),
8: (0.03, 0.05, 0.1, 0.15, 0.25, 0.2, 0.1, 0.12),
9: (0.02, 0.1, 0.1, 0.1, 0.15, 0.2, 0.15, 0.1, 0.08),
10: (0.01, 0.1, 0.1, 0.15, 0.2, 0.15, 0.1, 0.05, 0.05, 0.09)
}
dist_prob_map_low = {
1: (1.0,),
2: (0.8, 0.2),
3: (0.8, 0.1, 0.1),
4: (0.7, 0.1, 0.1, 0.1),
5: (0.7, 0.1, 0.1, 0.05, 0.05),
6: (0.7, 0.1, 0.05, 0.05, 0.05, 0.05),
}
_bpm_range_rights = (
(40, '20-40'),
(60, '40-60'),
(66, '60-66'),
(76, '66-76'),
(108, '76-108'),
(120, '108-120'),
(168, '120-168'),
(176, '168-176'),
(200, '176-200')
)
_bpm_desc_map = {
'20-40': ("glacial pace", "extremely slow tempo", "crawl-like speed", "snail's pace", "almost motionless rhythm", "Larghissimo"),
'40-60': ("broad and slow", "spacious tempo", "unhurried pace", "calm rhythm", "relaxed speed", "Largo"),
'60-66': ("gentle tempo", "leisurely pace", "easy-going rhythm", "unrushed speed", "smooth and slow", 'Larghetto'),
'66-76': ("slow and steady", "deliberate tempo", "unhurried pace", "relaxed rhythm", "easy speed", 'Adagio'),
'76-108': ("walking pace", "moderate tempo", "steady rhythm", "balanced speed", "easy-flowing tempo", "Andante"),
'108-120': ("medium pace", "comfortable tempo", "even rhythm", "measured speed", "controlled tempo", 'Moderato'),
'120-168': ("quick and lively", "brisk pace", "energetic tempo", "upbeat rhythm", "spirited speed", 'Allegro'),
'168-176': ("lively and fast", "bright tempo", "sprightly pace", "vibrant rhythm", "animated speed", 'Vivace'),
'176-200': ("very fast tempo", "rapid pace", "high-speed rhythm", "hurried speed", "accelerated tempo", 'Presto'),
'>200': ("extremely fast", "breakneck speed", "blazing tempo", "lightning-fast rhythm", "supercharged pace", 'Prestissimo')
}
_bpm_desc_map_zh = {
'20-40': ("极度缓慢", "极慢的节奏", "悠长的旋律", "迟缓的节奏", "几乎静止的节奏", "甚缓"),
'40-60': ("宽广而缓慢", "宽敞的节奏", "从容不迫的速度", "平静的节奏", "轻松的速度", "广板"),
'60-66': ("柔和的节奏", "悠闲的速度", "轻松的节奏", "不慌不忙的速度", "平滑而缓慢", '小广板'),
'66-76': ("缓慢而稳定", "沉稳的旋律", "从容不迫的速度", "轻松的节奏", "轻松的速度", '慢板'),
'76-108': ("步行速度", "适中的节奏", "稳定的节奏", "平衡的速度", "流畅的节奏", "行板"),
'108-120': ("中等速度", "舒适的节奏", "均匀的节奏", "有节制的速度", "稳定的氛围", '中板'),
'120-168': ("快速而生动", "轻快的速度", "充满活力的节奏", "欢快的节奏", "富有精神的速度", '快板'),
'168-176': ("生动而快速", "明快的节奏", "活泼的速度", "充满活力的节奏", "生气勃勃的速度", '活泼的'),
'176-200': ("非常快的节奏", "快速的速度", "高速的节奏", "匆忙的速度", "加速的节奏", '急板'),
'>200': ("极快的速度", "极速旋律", "炽热的节奏", "闪电般的节奏", "疾驰的速度", '最急板')
}
def get_bpm_range(bpm):
bpm = int(bpm)
for right, tag in _bpm_range_rights:
if bpm <= right:
return tag
return '>200'
def gen_bpm_descript(bpm, lang='en'):
bpm_range = get_bpm_range(bpm)
if lang == 'en':
return random.choice(_bpm_desc_map[bpm_range])
elif lang == 'zh':
return random.choice(_bpm_desc_map_zh[bpm_range])
else:
raise ValueError(f"Unknown language {lang}")
def read_translate(translate: Optional[Dict[str, os.PathLike]]):
if translate is None:
return None
return {k: read_jsonlike(path) for k, path in translate.items()}
def tags_to_desc(tag_list, sep=',') -> str:
if not isinstance(tag_list, Sequence):
return str(tag_list)
if isinstance(tag_list, str):
return tag_list
if len(tag_list) <= 0:
return ''
elif len(tag_list) <= 5:
probs = dist_prob_map[len(tag_list)]
tags_num = random.choices(range(1, len(tag_list)+1), probs)[0]
random.shuffle(tag_list)
tag_list = tag_list[:tags_num]
return sep.join(tag_list)
else:
probs = dist_prob_map[5]
tags_num = random.choices(range(1, 6), probs)[0]
random.shuffle(tag_list)
tag_list = tag_list[:tags_num]
return sep.join(tag_list)
class PromptTemplate:
def __init__(self, template_text: str, tag_map: Dict[str, str], lang:str ='en'):
self.template_text = template_text
self.tag_map = tag_map
self.lang = lang
@property
def tags(self):
return tuple(self.tag_map.keys())
def apply(self, **kwargs):
for tag in list(kwargs.keys()):
if kwargs[tag] == '':
kwargs.pop(tag)
for tag in self.tags:
if tag in kwargs:
kwargs[tag] = self.tag_map[tag].format(**{tag: kwargs[tag]}).strip('[]')
else:
kwargs[tag] = ''
prompt = self.template_text.format(**kwargs)
return self.beautify(prompt)
def beautify(self, text):
if self.lang == 'en':
return self._beautify_en(text)
elif self.lang == 'zh':
return self._beautify_zh(text)
else:
raise ValueError(f'Unknown language {self.lang}')
@staticmethod
def _beautify_en(text):
# no continuous commas without content between them
text = re.sub(r'[,\s]*,[,\s]*', r', ', text)
# no continuous whitespace
text = re.sub(r'\s+', ' ', text)
# the comma is NOT followed by whitespace, and should be followed by ONE whitespace
text = re.sub(r'\s+,', r',', text)
text = re.sub(r',\s+', r', ', text)
# no whitespace before the full stop
text = re.sub(r'\s+\.', r'.', text)
# strip whitespace, comma, and replace ',.'
text = text.strip(' ,')
text = text.replace(',.', '.')
return text
@staticmethod
def _beautify_zh(text):
# no continuous commas without content between them
text = re.sub(r'[,、\s]*,[,、\s]*', r',', text)
text = re.sub(r'[,、\s]*、[,、\s]*', r'、', text)
# assume there should be NO whitespace in Chinese
text = re.sub(r'\s+', r'', text)
# strip whitespace, comma, and replace ',。'
text = text.strip(', 、')
text = text.replace(',。', '。')
return text
def __repr__(self):
return f'PromptTemplate({self.template_text!r}, {self.tag_map!r})'
__str__ = __repr__
def parse_prompt_template(prompt_template_text, lang='en'):
span_pattern = re.compile(r'\[.*?{.+?}.*?\]', re.DOTALL)
tag_pattern = re.compile(r'{.+?}', re.DOTALL)
template_text = prompt_template_text.strip()
span_texts = span_pattern.findall(prompt_template_text)
tag_map = {}
for span_text in span_texts:
tag = tag_pattern.findall(span_text)[0].strip('{}')
tag_map[tag] = span_text
template_text = template_text.replace(span_text, '{'+tag+'}')
return PromptTemplate(template_text=template_text, tag_map=tag_map, lang=lang)
def load_prompt_templates(path, num = 5, lang='en') -> List[PromptTemplate]:
with open(path, 'r') as f:
lines = f.readlines()
cnt = 0
pts = []
for line in lines:
pt = parse_prompt_template(line, lang=lang)
cnt += 1
if len(pt.tags) < num:
logger.error(f'Not enough tags on {path} in line {cnt}: {pt.tags}')
pts.append(pt)
return pts
class AudioStockDataset(Dataset):
def __init__(self,
num_examples:int,
metadata_path:str,
duration:float=60,
sr:int = 0,
return_path = False,
return_audio = True,
prompt_template_path: os.PathLike = None,
tag_types = [],
lang = 'en',
translate:Optional[Dict[str, os.PathLike]] = None
):
self.duration = duration
self.MAX_DURATION = 360
self._load_metadata(metadata_path)
if num_examples > 0:
self.random_choose = True
self.dataset_len = num_examples
else:
self.random_choose = False
self.dataset_len = len(self.data)
self.sr = sr
self.return_path = return_path
self.return_audio = return_audio
self.use_dynamic_prompt = prompt_template_path is not None
if self.use_dynamic_prompt:
self.prompt_templates = load_prompt_templates(prompt_template_path, num = len(tag_types), lang = lang)
self.tag_types = tag_types
self.lang = lang
self.translate = read_translate(translate)
def _load_metadata(self, metadata_path):
total_len = 0; valid_len = 0
with open(metadata_path) as fp:
lines = fp.readlines()
self.data = []
for line in lines:
item = json.loads(line)
total_len += 1
if(item['duration']>self.duration and item['duration']<self.MAX_DURATION):
valid_len += 1
self.data.append(item)
print("Filter data from {} to {}".format(total_len, valid_len))
self.is_info_recorded = bool('Tags' in self.data[0])
def __len__(self):
return self.dataset_len
def __getitem__(self, idx):
first_try = True
try_cnt = 0
while True:
try:
if(self.random_choose or not first_try):
index2 = np.random.randint(0,len(self.data))
else:
index2 = idx
first_try = False
return self.getitem_main(index2)
except:
print("Error loadding ", self.data[idx]["path"])
try_cnt += 1
if(try_cnt>10):
raise ValueError()
def getitem_main(self, idx):
path:str = self.data[idx]["path"]
json_path = path[:path.rfind('.')] + ".json"
if self.is_info_recorded:
item = self.data[idx]
else:
with open(json_path) as fp:
item:dict = json.load(fp)
description = self.generate_description(item)
if self.return_audio:
audio, sr = safe_random_seek_read(path, duration=self.duration, sample_rate=self.sr)
else:
audio = None
if self.return_path:
return audio, description, path
return audio, description
def generate_description(self, item):
if self.use_dynamic_prompt:
# dynamically generate prompt from given prompt template
prompt_template = random.choice(self.prompt_templates)
description = self.generate_description_dynamic(item, prompt_template)
else:
# use ordinary static prompt instead
description = self.generate_description_ordinary(item)
return description
def generate_description_dynamic(self, data, prompt_template: PromptTemplate):
exists_tag = [key for key in data if (key in self.tag_types) and (data[key] is not None) and (len(data[key]) > 0)]
if len(exists_tag) > 0:
probs = dist_prob_map[len(exists_tag)]
tags_num = random.choices(range(1, len(exists_tag)+1), probs)[0]
random.shuffle(exists_tag)
tags = exists_tag[:tags_num]
tags_args = {tag: self.tags_to_desc(data[tag], tag) for tag in tags}
tags_args = self.handle_BPM_tag(tags_args)
prompt = prompt_template.apply(**tags_args)
else:
# no strong tags, use all weak tags instead
prompt = prompt_template.apply()
return prompt
def tags_to_desc(self, tag_list, tag_type) -> str:
if self.lang == 'en':
return tags_to_desc(tag_list)
elif self.lang == 'zh':
if tag_type == 'BPM':
return tags_to_desc(tag_list, sep='、')
translator = self.translate[tag_type]
translated_tag_list = [translator[tag] for tag in tag_list if tag in translator ]
return tags_to_desc(translated_tag_list, sep='、')
def handle_BPM_tag(self, tags_args):
if "BPM" in tags_args and 'BPMDescript' in self.tag_types:
bpm = tags_args["BPM"]
del tags_args["BPM"]
tag_types_used = random.choice((('BPM',), ('BPMDescript',), ('BPM', 'BPMDescript')))
for tag_type in tag_types_used:
tags_args[tag_type] = bpm if tag_type == 'BPM' else gen_bpm_descript(bpm, lang=self.lang)
return tags_args
def generate_description_ordinary(self, data, thresh = 0.3):
if self.lang != 'en':
raise ValueError(f'Language {self.lang} is not supported for ordinary description generation')
description = f'a piece of music by {data["Artist"]}'
# Add genre if available
if data["Genre"] and random.random() > thresh:
genres = ', '.join(data["Genre"])
description += f', belonging to the {genres} genres'
# Add moods if available
if data["Tags"] and random.random() > thresh:
tags = ', '.join(data["Tags"])
description += f'. This track contains the tags:{tags}'
# Add moods if available
if data["Mood"] and random.random() > thresh:
moods = ', '.join(data["Mood"])
description += f'. This track conveys a {moods} mood.'
# Add instruments if available
if data["Instrument"] and random.random() > thresh:
instruments = ', '.join(data["Instrument"])
description += f'. and primarily features the following instruments: {instruments}'
# Add a period to end the description
description += '.'
return description
|