Spaces:
Running
on
L40S
Running
on
L40S
File size: 49,755 Bytes
258fd02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 |
from torch.utils.data import Dataset
from beartype.typing import Sequence, Callable, Optional, Dict, Tuple, List, Union
from beartype import beartype
from beartype.door import is_bearable
import random
import pandas as pd
import os
from torchaudio.functional import resample
import torch
import typing as tp
from pathlib import Path
import torchaudio as ta
import torch.nn.functional as F
import numpy as np
import json
import yaml
import torchaudio
import math
import re
from loguru import logger
import ffmpeg
class Read_and_PadCrop_Normalized_T(torch.nn.Module):
def __init__(self, n_samples: int, sample_rate: int, randomize: bool = True):
super().__init__()
self.n_samples = n_samples
self.sample_rate = sample_rate
self.randomize = randomize
def __call__(self, filename: str, duration: float, cur_sample_rate: int) -> Tuple[torch.Tensor, float, float, int, int]:
if self.n_samples < 0: #means not clip
chunk, _ = torchaudio.load(filename, frame_offset=0, num_frames=-1)
t_start = 0.
t_end = 1.0
offset = 0
else:
if(duration<(float(self.n_samples)/self.sample_rate+1)):
# print(duration,(float(self.n_samples)/self.sample_rate+1))
chunk, _ = torchaudio.load(filename, frame_offset=0, num_frames=-1)
t_start = 0.
t_end = min(1.0, float(self.n_samples) / float(self.sample_rate) / duration)
offset = 0
# print('c1:',chunk.shape)
else:
offset = np.random.randint(0,int(duration*cur_sample_rate)-int(float(self.n_samples)/self.sample_rate*cur_sample_rate))
t_start = offset / float(cur_sample_rate) / duration
t_end = t_start + float(self.n_samples) / float(self.sample_rate) / duration
chunk, _ = torchaudio.load(filename, frame_offset=offset, num_frames=int(float(self.n_samples)/self.sample_rate*cur_sample_rate))
# print('offset:',offset)
# print('c0:',chunk.shape)
# Pad with silence if necessary.
if(chunk.shape[0]>1):
chunk = chunk[torch.randint(chunk.shape[0], size=(1,)),:].float()
else:
chunk = chunk[[0],:].float()
if(cur_sample_rate!=self.sample_rate):
# print('a:',cur_sample_rate,chunk.shape)
chunk = torchaudio.functional.resample(chunk, cur_sample_rate, self.sample_rate)
# print('b:',self.sample_rate,chunk.shape)
if self.n_samples > 0:
if chunk.shape[-1] < self.n_samples:
chunk = torch.cat([chunk, torch.zeros((1, self.n_samples - chunk.shape[-1],))],-1)
else:
chunk = chunk[:,0:self.n_samples]
seconds_start = math.floor(offset / cur_sample_rate)
seconds_total = math.floor(duration)
return (
chunk,
t_start,
t_end,
seconds_start,
seconds_total
)
class Read_and_PadCrop_Normalized_T_Avoid_Watermark(torch.nn.Module):
def __init__(self, n_samples: int, sample_rate: int, randomize: bool = True, w_start = 0, w_interval = 11.3):
super().__init__()
self.n_samples = n_samples
self.sample_rate = sample_rate
self.randomize = randomize
self.w_start = w_start
self.w_interval = w_interval
def __call__(self, filename: str, duration: float, cur_sample_rate: int) -> Tuple[torch.Tensor, float, float, int, int]:
if self.n_samples < 0: #means not clip
chunk, _ = torchaudio.load(filename, frame_offset=0, num_frames=-1)
t_start = 0.
t_end = 1.0
offset = 0
else:
if(duration<(float(self.n_samples)/self.sample_rate+1)):
# print(duration,(float(self.n_samples)/self.sample_rate+1))
chunk, _ = torchaudio.load(filename, frame_offset=0, num_frames=-1)
t_start = 0.
t_end = min(1.0, float(self.n_samples) / float(self.sample_rate) / duration)
offset = 0
# print('c1:',chunk.shape)
else:
n_offset_option = (duration - self.w_start) // self.w_interval
if n_offset_option <= 1:
offset = 0
else:
offset = int((random.randint(0,n_offset_option-1) * self.w_interval + self.w_start) * cur_sample_rate)
# offset = np.random.randint(0,int(duration*cur_sample_rate)-int(float(self.n_samples)/self.sample_rate*cur_sample_rate))
t_start = offset / float(cur_sample_rate) / duration
t_end = t_start + float(self.n_samples) / float(self.sample_rate) / duration
chunk, _ = torchaudio.load(filename, frame_offset=offset, num_frames=int(float(self.n_samples)/self.sample_rate*cur_sample_rate))
# print('offset:',offset)
# print('c0:',chunk.shape)
# Pad with silence if necessary.
if(chunk.shape[0]>1):
chunk = chunk[torch.randint(chunk.shape[0], size=(1,)),:].float()
else:
chunk = chunk[[0],:].float()
if(cur_sample_rate!=self.sample_rate):
# print('a:',cur_sample_rate,chunk.shape)
chunk = torchaudio.functional.resample(chunk, cur_sample_rate, self.sample_rate)
# print('b:',self.sample_rate,chunk.shape)
if self.n_samples > 0:
if chunk.shape[-1] < self.n_samples:
chunk = torch.cat([chunk, torch.zeros((1, self.n_samples - chunk.shape[-1],))],-1)
else:
chunk = chunk[:,0:self.n_samples]
seconds_start = math.floor(offset / cur_sample_rate)
seconds_total = math.floor(duration)
return (
chunk,
t_start,
t_end,
seconds_start,
seconds_total
)
USE_DUMMY_AUDIO = False #当测试代码时,可以将其置为True,这样就不会读取实际数据,而是用生成的静默音频代替
if USE_DUMMY_AUDIO:
logger.warning("USE_DUMMY_AUDIO flag is True, don't use it when train or test!")
class SafeAudioReader:
"""
This class is an adaptor to Read_and_PadCrop_Normalized_T, make it safe to read audio data.
"""
def __init__(self,
duration: float, # 返回音频长度
sample_rate: int, # 返回音频的采样率,如与实际音频采样率不同,会作resample
randomize: bool = True,
use_avoid_watermark_policy = False,
):
self.n_samples = int(sample_rate * duration)
self.reader = (
Read_and_PadCrop_Normalized_T_Avoid_Watermark if use_avoid_watermark_policy \
else Read_and_PadCrop_Normalized_T
)(n_samples=self.n_samples, sample_rate=sample_rate, randomize=randomize)
#NOTE:这个是核心的函数,所有数据集读取音频都是调用的这个函数!
def __call__(self,
filepath: os.PathLike, # 音频路径
origin_sample_rate: Optional[int] = None, # 从json文件中读取的实际采样率,如果不给定,则会从文件头中读取
origin_duration: float = None, # 从json文件中读取的实际时长,如果不给定,则会从文件头中读取
) -> torch.Tensor:
if USE_DUMMY_AUDIO:
wav = torch.zeros(self.n_samples, dtype=torch.float32)
return wav
try:
if origin_sample_rate is None or origin_duration is None:
# audio_info = torchaudio.info(filepath)
# origin_sample_rate = audio_info.sample_rate
# origin_duration = audio_info.num_frames / origin_sample_rate
info = ffmpeg.probe(filepath)
origin_duration = float(info['format']['duration'])
origin_sample_rate = int(info['streams'][0]['sample_rate'])
wav, *ignored = self.reader(filepath, origin_duration, origin_sample_rate)
wav = wav.squeeze_(0)
except Exception as e:
logger.error(f"Error reading {filepath}: {e}")
wav = torch.zeros(self.n_samples, dtype=torch.float32)
return wav
class PromptTemplate:
def __init__(self, template_text: str, tag_map: Dict[str, str], lang:str ='en'):
self.template_text = template_text
self.tag_map = tag_map
self.lang = lang
@property
def tags(self):
return tuple(self.tag_map.keys())
def apply(self, **kwargs):
for tag in list(kwargs.keys()):
if kwargs[tag] == '':
kwargs.pop(tag)
for tag in self.tags:
if tag in kwargs:
kwargs[tag] = self.tag_map[tag].format(**{tag: kwargs[tag]}).strip('[]')
else:
kwargs[tag] = ''
prompt = self.template_text.format(**kwargs)
return self.beautify(prompt)
def beautify(self, text):
if self.lang == 'en':
return self._beautify_en(text)
elif self.lang == 'zh':
return self._beautify_zh(text)
else:
raise ValueError(f'Unknown language {self.lang}')
@staticmethod
def _beautify_en(text):
# no continuous commas without content between them
text = re.sub(r'[,\s]*,[,\s]*', r', ', text)
# no continuous whitespace
text = re.sub(r'\s+', ' ', text)
# the comma is NOT followed by whitespace, and should be followed by ONE whitespace
text = re.sub(r'\s+,', r',', text)
text = re.sub(r',\s+', r', ', text)
# no whitespace before the full stop
text = re.sub(r'\s+\.', r'.', text)
# strip whitespace, comma, and replace ',.'
text = text.strip(' ,')
text = text.replace(',.', '.')
return text
@staticmethod
def _beautify_zh(text):
# no continuous commas without content between them
text = re.sub(r'[,、\s]*,[,、\s]*', r',', text)
text = re.sub(r'[,、\s]*、[,、\s]*', r'、', text)
# assume there should be NO whitespace in Chinese
text = re.sub(r'\s+', r'', text)
# strip whitespace, comma, and replace ',。'
text = text.strip(', 、')
text = text.replace(',。', '。')
return text
def __repr__(self):
return f'PromptTemplate({self.template_text!r}, {self.tag_map!r})'
__str__ = __repr__
def parse_prompt_template(prompt_template_text, lang='en'):
span_pattern = re.compile(r'\[.*?{.+?}.*?\]', re.DOTALL)
tag_pattern = re.compile(r'{.+?}', re.DOTALL)
template_text = prompt_template_text.strip()
span_texts = span_pattern.findall(prompt_template_text)
tag_map = {}
for span_text in span_texts:
tag = tag_pattern.findall(span_text)[0].strip('{}')
tag_map[tag] = span_text
template_text = template_text.replace(span_text, '{'+tag+'}')
return PromptTemplate(template_text=template_text, tag_map=tag_map, lang=lang)
def load_prompt_templates(path, num = 5, lang='en') -> List[PromptTemplate]:
with open(path, 'r') as f:
lines = f.readlines()
cnt = 0
pts = []
for line in lines:
pt = parse_prompt_template(line, lang=lang)
cnt += 1
if len(pt.tags) < num:
logger.error(f'Not enough tags on {path} in line {cnt}: {pt.tags}')
pts.append(pt)
return pts
def get_base_dir_file(key: os.PathLike):
base = os.path.basename(key)
dirname = os.path.basename(os.path.dirname(key))
return os.path.join(dirname, base)
def read_jsonlike(path: os.PathLike):
#json or jsonl
if str(path).endswith(".json"):
with open(path, 'r', encoding='utf8') as f:
data = json.load(f)
return data
elif str(path).endswith(".jsonl"):
with open(path, 'r', encoding='utf8') as f:
data = [json.loads(line) for line in f.readlines()]
return data
else:
raise ValueError("Unknown file format")
dist_prob_map = {
1: (1.0,),
2: (0.5, 0.5),
3: (0.3, 0.4, 0.3),
4: (0.2, 0.3, 0.3, 0.2),
5: (0.2, 0.2, 0.3, 0.2, 0.1),
6: (0.1, 0.15, 0.2, 0.2, 0.2, 0.15),
7: (0.05, 0.1, 0.1, 0.2, 0.25, 0.2, 0.1),
8: (0.03, 0.05, 0.1, 0.15, 0.25, 0.2, 0.1, 0.12),
9: (0.02, 0.1, 0.1, 0.1, 0.15, 0.2, 0.15, 0.1, 0.08),
10: (0.01, 0.1, 0.1, 0.15, 0.2, 0.15, 0.1, 0.05, 0.05, 0.09)
}
'''
#更加偏向短文本的方案
dist_prob_map = {
1: (1.0,),
2: (0.7, 0.3),
3: (0.7, 0.2, 0.1),
4: (0.6, 0.2, 0.1, 0.1),
5: (0.6, 0.2, 0.1, 0.05, 0.05),
6: (0.6, 0.15, 0.1, 0.05, 0.05, 0.05),
7: (0.05, 0.1, 0.1, 0.2, 0.25, 0.2, 0.1),
8: (0.03, 0.05, 0.1, 0.15, 0.25, 0.2, 0.1, 0.12),
9: (0.02, 0.1, 0.1, 0.1, 0.15, 0.2, 0.15, 0.1, 0.08),
10: (0.01, 0.1, 0.1, 0.15, 0.2, 0.15, 0.1, 0.05, 0.05, 0.09)
}
'''
#全部都用的方案
# dist_prob_map = {
# 1: (1.0,),
# 2: (0, 1.0),
# 3: (0, 0, 1.0),
# 4: (0, 0, 0, 1.0),
# 5: (0, 0, 0, 0, 1.0),
# 6: (0, 0, 0, 0, 0, 1.0),
# 7: (0, 0, 0, 0, 0, 0, 1.0),
# 8: (0, 0, 0, 0, 0, 0, 0, 1.0),
# 9: (0, 0, 0, 0, 0, 0, 0, 0, 1.0),
# 10: (0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0)
# }
dist_prob_map_low = {
1: (1.0,),
2: (0.8, 0.2),
3: (0.8, 0.1, 0.1),
4: (0.7, 0.1, 0.1, 0.1),
5: (0.7, 0.1, 0.1, 0.05, 0.05),
6: (0.7, 0.1, 0.05, 0.05, 0.05, 0.05),
}
_bpm_range_rights = (
(40, '20-40'),
(60, '40-60'),
(66, '60-66'),
(76, '66-76'),
(108, '76-108'),
(120, '108-120'),
(168, '120-168'),
(176, '168-176'),
(200, '176-200')
)
_bpm_desc_map = {
'20-40': ("glacial pace", "extremely slow tempo", "crawl-like speed", "snail's pace", "almost motionless rhythm", "Larghissimo"),
'40-60': ("broad and slow", "spacious tempo", "unhurried pace", "calm rhythm", "relaxed speed", "Largo"),
'60-66': ("gentle tempo", "leisurely pace", "easy-going rhythm", "unrushed speed", "smooth and slow", 'Larghetto'),
'66-76': ("slow and steady", "deliberate tempo", "unhurried pace", "relaxed rhythm", "easy speed", 'Adagio'),
'76-108': ("walking pace", "moderate tempo", "steady rhythm", "balanced speed", "easy-flowing tempo", "Andante"),
'108-120': ("medium pace", "comfortable tempo", "even rhythm", "measured speed", "controlled tempo", 'Moderato'),
'120-168': ("quick and lively", "brisk pace", "energetic tempo", "upbeat rhythm", "spirited speed", 'Allegro'),
'168-176': ("lively and fast", "bright tempo", "sprightly pace", "vibrant rhythm", "animated speed", 'Vivace'),
'176-200': ("very fast tempo", "rapid pace", "high-speed rhythm", "hurried speed", "accelerated tempo", 'Presto'),
'>200': ("extremely fast", "breakneck speed", "blazing tempo", "lightning-fast rhythm", "supercharged pace", 'Prestissimo')
}
_bpm_desc_map_zh = {
'20-40': ("极度缓慢", "极慢的节奏", "悠长的旋律", "迟缓的节奏", "几乎静止的节奏", "甚缓"),
'40-60': ("宽广而缓慢", "宽敞的节奏", "从容不迫的速度", "平静的节奏", "轻松的速度", "广板"),
'60-66': ("柔和的节奏", "悠闲的速度", "轻松的节奏", "不慌不忙的速度", "平滑而缓慢", '小广板'),
'66-76': ("缓慢而稳定", "沉稳的旋律", "从容不迫的速度", "轻松的节奏", "轻松的速度", '慢板'),
'76-108': ("步行速度", "适中的节奏", "稳定的节奏", "平衡的速度", "流畅的节奏", "行板"),
'108-120': ("中等速度", "舒适的节奏", "均匀的节奏", "有节制的速度", "稳定的氛围", '中板'),
'120-168': ("快速而生动", "轻快的速度", "充满活力的节奏", "欢快的节奏", "富有精神的速度", '快板'),
'168-176': ("生动而快速", "明快的节奏", "活泼的速度", "充满活力的节奏", "生气勃勃的速度", '活泼的'),
'176-200': ("非常快的节奏", "快速的速度", "高速的节奏", "匆忙的速度", "加速的节奏", '急板'),
'>200': ("极快的速度", "极速旋律", "炽热的节奏", "闪电般的节奏", "疾驰的速度", '最急板')
}
def get_bpm_range(bpm):
bpm = int(bpm)
for right, tag in _bpm_range_rights:
if bpm <= right:
return tag
return '>200'
def gen_bpm_descript(bpm, lang='en'):
bpm_range = get_bpm_range(bpm)
if lang == 'en':
return random.choice(_bpm_desc_map[bpm_range])
elif lang == 'zh':
return random.choice(_bpm_desc_map_zh[bpm_range])
else:
raise ValueError(f"Unknown language {lang}")
def read_translate(translate: Union[Dict[str, os.PathLike], os.PathLike, None]):
if translate is None:
return None
if isinstance(translate, str):
return read_jsonlike(translate)
return {k: read_jsonlike(path) for k, path in translate.items()}
def gen_plain_prompt(key_list, sep=', '):
if len(key_list) == 0:
return 'none'
key_list = [k.strip() for k in key_list]
if len(key_list) > 10:
random.shuffle(key_list)
key_list = key_list[:10]
probs = dist_prob_map[len(key_list)]
num_tags = random.choices(range(1, len(key_list)+1), probs, k=1)[0]
random.shuffle(key_list)
tags = key_list[:num_tags]
tags_str = sep.join(tags)
return tags_str
class MagnaTagATuneDataset(Dataset):
def __init__(self):
pass
def tags_to_desc(tag_list, sep=',') -> str:
if not isinstance(tag_list, Sequence):
return str(tag_list)
if isinstance(tag_list, str):
return tag_list
if len(tag_list) <= 0:
return ''
elif len(tag_list) <= 5:
probs = dist_prob_map[len(tag_list)]
tags_num = random.choices(range(1, len(tag_list)+1), probs)[0]
random.shuffle(tag_list)
tag_list = tag_list[:tags_num]
return sep.join(tag_list)
else:
probs = dist_prob_map[5]
tags_num = random.choices(range(1, 6), probs)[0]
random.shuffle(tag_list)
tag_list = tag_list[:tags_num]
return sep.join(tag_list)
def get_sr_and_duration_info(item):
return item.get('sample_rate', None), item.get('duration', None)
class MtgJamendoDatasetFromJson(Dataset):
def __init__(self,
data_dir:str,
json_path:str,
duration:float=10,
sr:int = 0,
lang = 'en',
plain_rate = 0,
return_audio = True,
return_path = False,
prompt_template_path: os.PathLike = None,
tag_types = [],
translate:Optional[Dict[str, os.PathLike]] = None,
use_literal_none = True,
):
self.audio_reader = SafeAudioReader(duration, sr)
self.data_dir = data_dir
self._load_metadata_json(json_path)
self.sr = sr
self.duration = duration
self.plain_rate = plain_rate
self.return_audio = return_audio
self.return_path = return_path
self.use_literal_none = use_literal_none
self.lang = lang
self.use_dynamic_prompt = prompt_template_path is not None and plain_rate < 1.0
if self.use_dynamic_prompt:
self.prompt_templates = load_prompt_templates(prompt_template_path, num = len(tag_types))
self.tag_types = tag_types
self.translate = read_translate(translate)
#这些tag被认为是弱语义的,会避免产生仅包含这些tag的文本提示
WEAK_TAG_LIST = ["title", "artist"]
def _load_metadata_json(self, json_path):
with open(json_path) as fp:
self.data = json.load(fp)
def convert_key_to_path(self, key):
return os.path.join(self.data_dir, get_base_dir_file(key))
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
path = self.convert_key_to_path(item['key'])
description = self.generate_description(item)
if self.return_audio:
sr, duration = get_sr_and_duration_info(item)
audio = self.audio_reader(path, sr, duration)
else:
audio = None
if self.return_path:
return audio, description, path
return audio, description
def tags_to_desc(self, tag_list, tag_type) -> str:
if self.lang == 'en':
return tags_to_desc(tag_list)
elif self.lang == 'zh':
translator = self.translate[tag_type]
translated_tag_list = [translator[tag] for tag in tag_list if tag in translator ]
return tags_to_desc(translated_tag_list, sep='、')
def generate_description(self, item):
if random.random() > self.plain_rate:
# dynamically generate prompt from given prompt template
prompt_template = random.choice(self.prompt_templates)
description = self.generate_description_dynamic(item, prompt_template)
else:
# use plain prompt, i.e. tags sequence separated by comma
description = self.generate_description_plain(item)
return description
def generate_description_dynamic(self, data, prompt_template: PromptTemplate):
exists_tag = [key for key in data if (key in self.tag_types) and (data[key] is not None) and (len(data[key]) > 0)]
exists_weak_tag = list(filter(lambda t: t in self.WEAK_TAG_LIST, exists_tag))
exists_strong_tag = list(filter(lambda t: t not in self.WEAK_TAG_LIST, exists_tag))
if len(exists_strong_tag) > 0:
probs = dist_prob_map[len(exists_strong_tag)]
tags_num = random.choices(range(1, len(exists_strong_tag)+1), probs)[0]
random.shuffle(exists_strong_tag)
tags = exists_strong_tag[:tags_num]
weak_probs = dist_prob_map_low[len(exists_weak_tag) + 1]
weak_tags_num = random.choices(range(0, len(exists_weak_tag) + 1), weak_probs)[0]
random.shuffle(exists_weak_tag)
weak_tags = exists_weak_tag[:weak_tags_num]
tags += weak_tags
tags_args = {tag: self.tags_to_desc(data[tag], tag) for tag in tags}
prompt = prompt_template.apply(**tags_args)
else:
# no strong tags, use all weak tags instead
tags_args = {tag: self.tags_to_desc(data[tag], tag) for tag in exists_weak_tag}
prompt = prompt_template.apply(**tags_args)
if self.use_literal_none and len(tags_args) == 0:
return 'none'
return prompt
def generate_description_plain(self, item):
keywords = []
for tag_t in self.tag_types:
this_key = item[tag_t]
if this_key is None:
continue
if isinstance(this_key, str):
this_key = [this_key]
if self.lang != 'en':
this_key = [self.get_translation(tag_t, k) for k in this_key]
keywords += this_key
return gen_plain_prompt(keywords, sep=self.keysep)
def get_translation(self, tag_t, k):
k = k.strip()
if k in self.translate[tag_t]:
return self.translate[tag_t][k]
else:
return k
@property
def keysep(self):
if self.lang == 'zh':
return ',' if random.random() > 0.5 else '、'
elif self.lang == 'en':
return ', '
class AudioStockDataset(Dataset):
def __init__(self,
metadata_path:str,
duration:float=10,
sr:int = 0,
plain_rate = 0,
return_path = False,
return_audio = True,
prompt_template_path: os.PathLike = None,
tag_types = [],
lang = 'en',
translate:Optional[Dict[str, os.PathLike]] = None,
use_literal_none = True,
):
self.audio_reader = SafeAudioReader(duration, sr)
self._load_metadata(metadata_path)
self.sr = sr
self.duration = duration
self.plain_rate = plain_rate
self.return_path = return_path
self.return_audio = return_audio
self.use_literal_none = use_literal_none
self.use_dynamic_prompt = prompt_template_path is not None and plain_rate < 1.0
if self.use_dynamic_prompt:
self.prompt_templates = load_prompt_templates(prompt_template_path, num = len(tag_types), lang = lang)
self.tag_types = tag_types
self.lang = lang
self.translate = read_translate(translate)
def _load_metadata(self, metadata_path):
with open(metadata_path) as fp:
lines = fp.readlines()
self.data = []
for line in lines:
item = json.loads(line)
self.data.append(item)
self.is_info_recorded = bool('Tags' in self.data[0])
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
path:str = self.data[idx]["path"]
json_path = path[:path.rfind('.')] + ".json"
if self.is_info_recorded:
item = self.data[idx]
else:
try:
with open(json_path) as fp:
item:dict = json.load(fp)
except Exception as e:
print(f"Error loading json file {json_path} :\n{e}")
item = {}
description = self.generate_description(item)
if self.return_audio:
sr, duration = get_sr_and_duration_info(item)
audio = self.audio_reader(path, sr, duration)
else:
audio = None
if self.return_path:
return audio, description, path
return audio, description
def generate_description(self, item):
if random.random() > self.plain_rate:
# dynamically generate prompt from given prompt template
prompt_template = random.choice(self.prompt_templates)
description = self.generate_description_dynamic(item, prompt_template)
else:
# use plain prompt, i.e. tags sequence separated by comma
description = self.generate_description_plain(item)
return description
def generate_description_dynamic(self, data, prompt_template: PromptTemplate):
exists_tag = [key for key in data if (key in self.tag_types) and (data[key] is not None) and (len(data[key]) > 0)]
if len(exists_tag) > 0:
probs = dist_prob_map[len(exists_tag)]
tags_num = random.choices(range(1, len(exists_tag)+1), probs)[0]
random.shuffle(exists_tag)
tags = exists_tag[:tags_num]
tags_args = {tag: self.tags_to_desc(data[tag], tag) for tag in tags}
tags_args = self.handle_BPM_tag(tags_args)
prompt = prompt_template.apply(**tags_args)
else:
return 'none'
if self.use_literal_none and len(tags_args) == 0:
return 'none'
return prompt
def get_translation(self, tag_t, k):
k = k.strip()
if k in self.translate[tag_t]:
return self.translate[tag_t][k]
else:
return k
def generate_description_plain(self, item):
keywords = []
for tag_t in self.tag_types:
if tag_t == 'BPMDescript':
bpm = item['BPM']
if bpm is None or bpm.strip() == '' or bpm.strip() == '0':
continue
this_key = gen_bpm_descript(bpm.strip(), lang=self.lang)
elif tag_t == 'BPM':
bpm = item['BPM']
if bpm is None or bpm.strip() == '' or bpm.strip() == '0':
continue
this_key = f"{bpm.strip()} bpm"
else:
this_key = item[tag_t]
if this_key is None:
continue
if isinstance(this_key, str):
this_key = [this_key]
if self.lang != 'en':
this_key = [self.get_translation(tag_t, k) for k in this_key]
if this_key is None:
continue
if isinstance(this_key, str):
this_key = [this_key]
keywords += this_key
return gen_plain_prompt(keywords, sep=self.keysep)
@property
def keysep(self):
if self.lang == 'zh':
return ',' if random.random() > 0.5 else '、'
elif self.lang == 'en':
return ', '
def tags_to_desc(self, tag_list, tag_type) -> str:
if self.lang == 'en':
return tags_to_desc(tag_list)
elif self.lang == 'zh':
if tag_type == 'BPM':
return tags_to_desc(tag_list, sep='、')
translator = self.translate[tag_type]
translated_tag_list = [translator[tag] for tag in tag_list if tag in translator ]
return tags_to_desc(translated_tag_list, sep='、')
def handle_BPM_tag(self, tags_args):
if "BPM" in tags_args and 'BPMDescript' in self.tag_types:
bpm = tags_args["BPM"]
del tags_args["BPM"]
tag_types_used = random.choice((('BPM',), ('BPMDescript',), ('BPM', 'BPMDescript')))
for tag_type in tag_types_used:
tags_args[tag_type] = bpm if tag_type == 'BPM' else gen_bpm_descript(bpm, lang=self.lang)
return tags_args
def mp3_path_to_id(mp3_path):
return int(
mp3_path[mp3_path.rindex('/') + 1 : mp3_path.rindex('.')]
)
class TmeDataset(Dataset):
def __init__(self,
data_index:str,
music_info:str = None,
duration:float = 10,
sr:int = 0,
plain_rate = 0,
return_path = False,
return_audio = True,
return_ID = False,
prompt_format_path: os.PathLike = None,
tag_types = ['*'],
lang = 'zh',
translate: Optional[os.PathLike] = None,
prompt_dir: os.PathLike = None, #使用GPT生成的预有的prompt
):
if plain_rate > 0:
print("Tme Dataset do not support plain rate > 0, use plain_rate = 0 instead.")
plain_rate = 0
self.audio_reader = SafeAudioReader(duration, sr)
self.sr = sr
self.duration = duration
self.plain_rate = plain_rate
self.return_path = return_path
self.return_audio = return_audio
self.return_ID = return_ID
self.lang = lang
self.use_ready_prompt = prompt_dir is not None
data_index = read_jsonlike(data_index)
self.data_index_dict = {mp3_path_to_id(d['path']) : d for d in data_index}
self.data_ids = list(self.data_index_dict.keys())
if not self.use_ready_prompt:
#读取音乐的信息文件
music_info = read_jsonlike(music_info)
if 'music' in music_info:
music_info = music_info['music']
self.music_info_dict = {d["歌曲ID"]:d for d in music_info}
self.data_index_dict = {k:v for k,v in self.data_index_dict.items() if k in self.music_info_dict}
self.data_ids = list(self.data_index_dict.keys())
with open(prompt_format_path) as fp:
self.prompt_formats = yaml.load(fp, Loader=yaml.FullLoader)
#加载tag types,并分成一般的tag_types和关键的key_tag_types
if '*' in tag_types:
self.tag_types = ['歌曲名', 'bpm', '专辑名', '歌手名', '作曲', 'tag']
else:
self.tag_types = tag_types
self.key_tag_types = []
if 'tag' in self.tag_types:
self.tag_types.remove('tag')
self.key_tag_types = list(self.prompt_formats['tag'].keys())
#加载translate翻译
if translate is not None:
self.translator = read_jsonlike(translate)
else:
data_ids_set = set(self.data_ids)
self.prompts_dict = {}
for fname in os.listdir(prompt_dir):
items = read_jsonlike(os.path.join(prompt_dir, fname))
for item in items:
if item['ID'] not in data_ids_set or not self.is_valid_prompt_text(item['Text']):
continue
if item['ID'] not in self.prompts_dict:
self.prompts_dict[item['ID']] = []
self.prompts_dict[item['ID']].append(item['Text'])
self.data_index_dict = {k:v for k,v in self.data_index_dict.items() if k in self.prompts_dict}
self.data_ids = list(self.data_index_dict.keys())
def tags_to_desc(self, tag_list) -> str:
if is_bearable(tag_list, int):
return str(tag_list)
if self.lang == 'zh':
return tags_to_desc(tag_list, sep=self.sep)
else:
translated_tag_list = [self.translator[tag] for tag in tag_list if tag in self.translator ]
return tags_to_desc(translated_tag_list, sep=self.sep)
def gen_desc_of_tag(self, formats, tags):
fmt = random.choice(formats)
return fmt.format(self.tags_to_desc(tags))
@staticmethod
def check_valid(value):
if isinstance(value, int) or isinstance(value, float):
return value > 0
if (value is not None) and (not isinstance(value, Sequence) or len(value) > 0):
return True
return False
@staticmethod
def remove_repeat(data):
#若专辑名和歌曲名相同,则只使用后者
album_name = data.get('专辑名', None)
if album_name is not None and album_name == data.get('歌曲名', None):
del data['专辑名']
return data
@property
def comma(self):
if self.lang == 'zh':
return ','
elif self.lang == 'en':
return ', '
@property
def sep(self):
if self.lang == 'zh':
return '、'
elif self.lang == 'en':
return ', '
def generate_description(self, item):
if random.random() > self.plain_rate:
# dynamically generate prompt from given prompt template
description = self.generate_description_dynamic(item)
else:
# use plain prompt, i.e. tags sequence separated by comma
description = self.generate_description_plain(item)
return description
def generate_description_dynamic(self, data):
data = self.remove_repeat(data)
weak_tags = [key for key in data if (key in self.tag_types and self.check_valid(data[key]))] #弱语义的tag,这些tag的出现比例会放低
key_tags = [key for key in data['tag'] if (key in self.key_tag_types and self.check_valid(data['tag'][key]))] #关键的tag,这些tag必须出现至少一个
prompts = []
if len(weak_tags) > 0:
probs = dist_prob_map_low[len(weak_tags)]
if len(key_tags) > 0:
tags_num = random.choices(range(0, len(weak_tags)), probs)[0]
else:
tags_num = random.choices(range(1, len(weak_tags) + 1), probs)[0]
random.shuffle(weak_tags)
tags = weak_tags[:tags_num]
for tag_type in tags:
tag_desc = self.gen_desc_of_tag(self.prompt_formats[tag_type], int(data[tag_type]) if tag_type == 'bpm' else data[tag_type])
prompts.append(tag_desc)
if len(key_tags) > 0:
probs = dist_prob_map[len(key_tags)]
tags_num = random.choices(range(1, len(key_tags) + 1), probs)[0]
random.shuffle(key_tags)
tags = key_tags[:tags_num]
for tag_type in tags:
tag_desc = self.gen_desc_of_tag(self.prompt_formats['tag'][tag_type], data['tag'][tag_type])
prompts.append(tag_desc)
random.shuffle(prompts)
return self.comma.join(prompts)
def generate_description_plain(self, item):
keywords = item['tag']
if self.lang != 'en':
keywords = [self.translator[k.strip()] for k in keywords]
return gen_plain_prompt(keywords, sep=self.keysep)
@property
def keysep(self):
if self.lang == 'zh':
return ',' if random.random() > 0.5 else '、'
elif self.lang == 'en':
return ', '
def is_valid_prompt_text(self, text):
for bad in ('抱歉','sorry', 'Sorry'):
if bad in text:
return False
return True
def get_ready_prompt(self, path):
sid = mp3_path_to_id(path)
return random.choice(self.prompts_dict[sid])
def __len__(self):
return len(self.data_ids)
def __getitem__(self, idx):
data_id = self.data_ids[idx]
item = self.data_index_dict[data_id]
path = item['path']
if not self.use_ready_prompt:
info = self.music_info_dict[data_id]
description = self.generate_description(info)
else:
description = self.get_ready_prompt(path)
if self.return_audio:
sr, duration = get_sr_and_duration_info(item)
audio = self.audio_reader(path, sr, duration)
else:
audio = None
if self.return_path:
if self.return_ID:
return audio, description, path, info['歌曲ID']
return audio, description, path
if self.return_ID:
return audio, description, info['歌曲ID']
return audio, description
class Pond5Dataset(Dataset):
MAX_PROMPT_LEN = 200
def __init__(self,
metadata_path:str,
index_path:str,
duration:float=10,
sr:int = 0,
plain_rate = 0,
return_path = False,
return_audio = True,
lang = 'en',
translate:Optional[Dict[str, os.PathLike]] = None,
use_literal_none = True,
use_avoid_watermark_policy = None,
):
if use_avoid_watermark_policy is None:
raise ValueError("`use_avoid_watermark_policy` is an important param, you need to explicitly specify it with bool type")
self.use_avoid_watermark_policy = use_avoid_watermark_policy
self.audio_reader = SafeAudioReader(duration, sr, use_avoid_watermark_policy=use_avoid_watermark_policy)
self._load_metadata(metadata_path, index_path)
self.sr = sr
self.duration = duration
self.plain_rate = plain_rate
self.return_path = return_path
self.return_audio = return_audio
self.use_literal_none = use_literal_none
self.lang = lang
self.translate = read_translate(translate)
def _load_metadata(self, metadata_path, index_path):
data_index = read_jsonlike(index_path)
data_ids = set([item['id'] for item in data_index])
with open(metadata_path) as fp:
lines = fp.readlines()
append_ids = set()
self.data = []
for line in lines:
item = json.loads(line)
if item['id'] in data_ids and item['id'] not in append_ids:
self.data.append(item)
append_ids.add(item['id'])
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
path:str = item["path"]
description = self.generate_description(item)
if self.return_audio:
sr, duration = get_sr_and_duration_info(item)
audio = self.audio_reader(path, sr, duration)
else:
audio = None
if self.return_path:
return audio, description, path
return audio, description
@property
def keysep(self):
if self.lang == 'zh':
return ',' if random.random() > 0.5 else '、'
elif self.lang == 'en':
return ', '
def generate_description(self, item):
if random.random() > self.plain_rate:
# dynamically generate prompt from given prompt template
description = self.generate_description_dynamic(item)
else:
# use plain prompt, i.e. tags sequence separated by comma
description = self.generate_description_plain(item)
return description
def get_translation(self, k):
k = k.strip()
if k in self.translate:
return self.translate[k]
else:
return k
def generate_description_plain(self, item):
keywords = item['keywords']
if self.lang != 'en':
keywords = [self.get_translation(k) for k in keywords]
return gen_plain_prompt(keywords, sep=self.keysep)
def generate_description_dynamic(self,item):
desc = item.get('desc', 'none')
if desc is None:
desc = 'none'
desc = desc.strip()
if len(desc) > self.MAX_PROMPT_LEN:
shorter_desc = desc[:self.MAX_PROMPT_LEN]
# find last stop
stop_idx = shorter_desc.rfind('.')
if stop_idx == -1:
stop_idx = shorter_desc.rfind('!')
if stop_idx == -1:
stop_idx = shorter_desc.rfind(',')
if stop_idx == -1:
stop_idx = self.MAX_PROMPT_LEN - 1
desc = desc[:stop_idx+1]
return desc
class SoundDataset(Dataset):
def __init__(self,
metadata_index: str,
duration:float = 10,
min_non_silent_duration:float = 3,
sr:int = 0,
return_path = False,
return_audio = True,
):
self.data = read_jsonlike(metadata_index)
self.sr = sr
self.reader = SafeAudioReader(duration, sr)
self.duration = duration
self.min_non_silent_duration = min_non_silent_duration
self.return_audio = return_audio
self.return_path = return_path
def __getitem__(self, index):
item = self.data[index]
if self.return_audio:
origin_duration = item['duration']
if origin_duration < self.min_non_silent_duration:
audio = self.read_and_repeat_and_pad(item)
else:
audio = self.reader(item['path'], item['sample_rate'], origin_duration)
else:
audio = None
desc = item['caption']
if self.return_path:
return audio, desc, item['path']
else:
return audio, desc
def __len__(self):
return len(self.data)
def read_and_repeat_and_pad(self, item):
path = item['path']
try:
# read
clip, sr = torchaudio.load(path)
if len(clip.shape) > 1:
clip = torch.mean(clip, dim=0, keepdim=True)
clip = resample(clip, sr, self.sr)
#repeat
n_repeats = math.ceil(self.min_non_silent_duration/item['duration'])
clip = torch.repeat_interleave(clip, n_repeats, dim=0).reshape(-1)
#pad
n_samples = int(self.duration * self.sr)
if clip.shape[0] >= n_samples:
audio = clip[:n_samples]
else:
audio = torch.zeros(int(self.duration * self.sr), dtype=clip.dtype)
start_pos = np.random.randint(0, max(0,(n_samples - clip.shape[0])))
audio[start_pos:start_pos+clip.shape[0]] = clip
return audio
except Exception as e:
logger.error(f"Error reading {path}: {e}")
wav = torch.zeros(int(self.duration * self.sr), dtype=torch.float32)
return wav
class CombinedDataset(Dataset):
@beartype
def __init__(self, datasets: Sequence[Dataset], ratios: Sequence[int]):
self.datasets = datasets
self.datasets_index = []
for i,dataset in enumerate(datasets):
if dataset is None:
continue
for dup in range(ratios[i]):
for j in range(len(dataset)):
self.datasets_index.append((i,j))
def __len__(self):
return len(self.datasets_index)
def __getitem__(self, idx):
index = self.datasets_index[idx]
i,j = index
return self.datasets[i][j]
class CombinedDataset_random(Dataset):
@beartype
def __init__(self, num_examples:int, datasets: Sequence[Dataset], ratios: Sequence[int]):
self.datasets = datasets
self.datasets_index = []
for i,dataset in enumerate(datasets):
if dataset is None:
continue
for dup in range(ratios[i]):
for j in range(len(dataset)):
self.datasets_index.append((i,j))
if num_examples > 0:
self.random_choose = True
self.dataset_len = num_examples
else:
self.random_choose = False
self.dataset_len = len(self.datasets_index)
def __len__(self):
return self.dataset_len
def __getitem__(self, idx):
first_try = True
try_cnt = 0
while True:
try:
if(self.random_choose or not first_try):
index2 = []
index2.append(np.random.randint(0,len(self.datasets)))
index2.append(np.random.randint(0,len(self.datasets[index2[-1]])))
else:
index2 = self.datasets_index[idx]
first_try = False
out = list(self.datasets[index2[0]][index2[1]])
return out
except:
print("Error loadding ", index2)
try_cnt += 1
if(try_cnt>10):
raise ValueError()
class SoundMixedDataset(Dataset):
@staticmethod
def music_desc(desc):
return f'Music:<{desc}>'
@staticmethod
def sound_desc(desc):
return f'Effect:<{desc}>'
def __init__(self,
music_dataset: Dataset,
sound_dataset: Dataset,
mixed_ratios: Tuple[float, float, float] = (0.3, 0.3, 0.4) # 只有音乐:只有音效:音乐音效混合 的比例
) -> None:
self.music_dataset = music_dataset
self.sound_dataset = sound_dataset
music_r, sound_r, mix_r = [r/sum(mixed_ratios) for r in mixed_ratios] #化为0-1间的比例
#三个概率区间的左端点
self.music_anchor = 0
self.sound_anchor = music_r
self.mix_anchor = music_r + sound_r
def __len__(self):
return len(self.music_dataset)
def get_random_sound_data(self):
idx = random.randint(0, len(self.sound_dataset)-1)
return self.sound_dataset[idx]
def __getitem__(self, idx):
p = random.random()
if p >= self.mix_anchor:
music, m_desc = self.music_dataset[idx]
sound, s_desc = self.get_random_sound_data()
audio = music + sound
if(audio.abs().max()>1.0):
music = music / audio.abs().max() * 0.95
audio = audio / audio.abs().max() * 0.95
desc = self.music_desc(m_desc) + self.sound_desc(s_desc)
return audio[None,:], music[None,:], desc
elif p >= self.sound_anchor:
audio, desc = self.get_random_sound_data()
return audio[None,:], torch.zeros_like(audio[None,:]), self.sound_desc(desc)
else:
audio, desc = self.music_dataset[idx]
return audio[None,:], audio[None,:], self.music_desc(desc)
class DecoTagDataset(Dataset):
'''这个类把普通的datatset包装成适用于标签解耦学习的dataset'''
TAG_TYPES = ('genre', 'mood', 'insrument')
def __init__(self, dataset_class: type, tag_map: Dict[str, str], *args, **kwargs):
self.datasets = []
for i, tag_t in enumerate(self.TAG_TYPES):
kwargs['tag_types'] = [tag_map[tag_t]]
kwargs['return_audio'] = (i == 0) #只有第0个需要返回音频和文本,其余只需要返回文本
self.datasets.append(dataset_class(*args, **kwargs))
def __len__(self):
return len(self.datasets[0])
def __getitem__(self, idx):
audio, text = self.datasets[0][idx]
texts = (text, self.datasets[1][idx][1], self.datasets[2][idx][1])
return audio, texts
class DecoTagWrapper:
'''这是一个包装器,便于选择是否使用标签解耦学习'''
def __init__(self, dataset_class: Dataset, deco_tag_types: List[str] = list(), switch_on: bool = False):
self.dataset_class = dataset_class
self.tag_map = dict(zip(DecoTagDataset.TAG_TYPES, deco_tag_types))
self.switch_on = switch_on
def __call__(self, *args, **kwargs):
if self.switch_on:
return DecoTagDataset(self.dataset_class, self.tag_map, *args, **kwargs)
else:
return self.dataset_class(*args, **kwargs)
|