File size: 5,523 Bytes
258fd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import sys
import os

import time
import json
import torch
import torchaudio
import numpy as np
from omegaconf import OmegaConf

from codeclm.trainer.codec_song_pl import CodecLM_PL
from codeclm.models import CodecLM
from third_party.demucs.models.pretrained import get_model_from_yaml


class Separator:
    def __init__(self, dm_model_path='third_party/demucs/ckpt/htdemucs.pth', dm_config_path='third_party/demucs/ckpt/htdemucs.yaml', gpu_id=0) -> None:
        if torch.cuda.is_available() and gpu_id < torch.cuda.device_count():
            self.device = torch.device(f"cuda:{gpu_id}")
        else:
            self.device = torch.device("cpu")
        self.demucs_model = self.init_demucs_model(dm_model_path, dm_config_path)

    def init_demucs_model(self, model_path, config_path):
        model = get_model_from_yaml(config_path, model_path)
        model.to(self.device)
        model.eval()
        return model
    
    def load_audio(self, f):
        a, fs = torchaudio.load(f)
        if (fs != 48000):
            a = torchaudio.functional.resample(a, fs, 48000)
        if a.shape[-1] >= 48000*10:
            a = a[..., :48000*10]
        else:
            a = torch.cat([a, a], -1)
        return a[:, 0:48000*10]
    
    def run(self, audio_path, output_dir='tmp', ext=".flac"):
        os.makedirs(output_dir, exist_ok=True)
        name, _ = os.path.splitext(os.path.split(audio_path)[-1])
        output_paths = []

        for stem in self.demucs_model.sources:
            output_path = os.path.join(output_dir, f"{name}_{stem}{ext}")
            if os.path.exists(output_path):
                output_paths.append(output_path)
        if len(output_paths) == 1:  # 4
            vocal_path = output_paths[0]
        else:
            drums_path, bass_path, other_path, vocal_path = self.demucs_model.separate(audio_path, output_dir, device=self.device)
            for path in [drums_path, bass_path, other_path]:
                os.remove(path)
        full_audio = self.load_audio(audio_path)
        vocal_audio = self.load_audio(vocal_path)
        bgm_audio = full_audio - vocal_audio
        return full_audio, vocal_audio, bgm_audio


def main_sep():
    torch.backends.cudnn.enabled = False #taiji的某些傻呗node会报奇奇怪怪的错
    OmegaConf.register_new_resolver("eval", lambda x: eval(x))
    OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx])
    OmegaConf.register_new_resolver("get_fname", lambda: os.path.splitext(os.path.basename(sys.argv[1]))[0])
    OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x)))
    cfg = OmegaConf.load(sys.argv[1])
    save_dir = sys.argv[2]
    input_jsonl = sys.argv[3]
    sidx = sys.argv[4]
    cfg.mode = 'inference'
    max_duration = cfg.max_dur
    
    # Define model or load pretrained model
    model_light = CodecLM_PL(cfg)

    model_light = model_light.eval().cuda()
    model_light.audiolm.cfg = cfg
    model = CodecLM(name = "tmp",
        lm = model_light.audiolm,
        audiotokenizer = model_light.audio_tokenizer,
        max_duration = max_duration,
        seperate_tokenizer = model_light.seperate_tokenizer,
    )
    separator = Separator()
    
    cfg_coef = 1.5 #25
    temp = 1.0
    top_k = 50
    top_p = 0.0
    record_tokens = True
    record_window = 50

    model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef,
                                top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window)
    os.makedirs(save_dir + "/token", exist_ok=True)
    os.makedirs(save_dir + "/audios", exist_ok=True)
    os.makedirs(save_dir + "/jsonl", exist_ok=True)

    with open(input_jsonl, "r") as fp:
        lines = fp.readlines()

    new_items = []
    for line in lines:
        item = json.loads(line)
        target_name = f"{save_dir}/token/{item['idx']}_s{sidx}.npy"
        target_wav_name = f"{save_dir}/audios/{item['idx']}_s{sidx}.flac"
        descriptions = item["descriptions"]
        lyric = item["gt_lyric"]
        
        start_time = time.time()
        pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path'])
        generate_inp = {
            'lyrics': [lyric.replace("  ", " ")],
            'descriptions': [descriptions],
            'melody_wavs': pmt_wav,
            'vocal_wavs': vocal_wav,
            'bgm_wavs': bgm_wav,
        }

        mid_time = time.time()
        with torch.autocast(device_type="cuda", dtype=torch.float16):
            tokens = model.generate(**generate_inp, return_tokens=True)
        end_time = time.time()
        if tokens.shape[-1] > 3000:
            tokens = tokens[..., :3000]
            
        with torch.no_grad():
            wav_seperate = model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
        torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate)
        np.save(target_name, tokens.cpu().squeeze(0).numpy())
        print(f"process{item['idx']}, demucs cost {mid_time - start_time}s, lm cos {end_time - mid_time}")

        item["idx"] = f"{item['idx']}_s{sidx}"
        item["tk_path"] = target_name
        new_items.append(item)
    
    src_jsonl_name = os.path.split(input_jsonl)[-1]
    with open(f"{save_dir}/jsonl/{src_jsonl_name}-s{sidx}.jsonl", "w", encoding='utf-8') as fw:
        for item in new_items:
            fw.writelines(json.dumps(item, ensure_ascii=False)+"\n")


if __name__ == "__main__":
    main_sep()