File size: 30,332 Bytes
258fd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
"""
Main model for using CodecLM. This will combine all the required components
and provide easy access to the generation API.
"""

import typing as tp
import warnings
import sys
import time
import torch
import torch.nn as nn
from torch.nn import functional as F
import torchaudio
import numpy as np
import lightning as pl
from torchmetrics.classification import MulticlassAccuracy
import pdb
from codeclm.models import builders
import math
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from peft import LoraConfig, get_peft_model
from datetime import datetime
import os 
os.environ['TOKENIZERS_PARALLELISM'] = "false"


class CodecLM_PL(pl.LightningModule):
    def __init__(self, cfg):
        super().__init__()

        self.cfg = cfg
        
        # 1) Build audio tokenizer (usually None during training)
        self.audio_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint, self.cfg)
        if self.audio_tokenizer is not None:
            for param in self.audio_tokenizer.parameters():
                param.requires_grad = False
        if "audio_tokenizer_checkpoint_sep" in self.cfg.keys():
            self.seperate_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint_sep, self.cfg)
            for param in self.seperate_tokenizer.parameters():
                param.requires_grad = False
        else:
            self.seperate_tokenizer = None
        
        # 2) Build LM
        self.audiolm = builders.get_lm_model(self.cfg)
        print(self.audiolm)
        # 输出参数量
        print('Number of parameters: ', sum(p.numel() for p in self.audiolm.parameters()))
        # 3) Load pretrained checkpoint (if any)
        if self.cfg.use_pretrained == 'deepspeed':
            checkpoint = torch.load(self.cfg.pretrained.deepspeed_checkpoint, map_location='cpu')
            missing, unexpected = self.load_state_dict(checkpoint, strict=False)
            print(f'-------------Missing--------------\n{missing}')
            print(f'-------------Unexpected--------------\n{unexpected}')
            print("successfully load deepspeed pretrained model {}".format(self.cfg.pretrained.deepspeed_checkpoint))
            self.missing = missing
        else:
            self.missing = []
        # 如果cfg参数中有lora
        if hasattr(self.cfg, 'lora'):
            perf_config = LoraConfig(
                r = self.cfg.lora.r,
                lora_alpha = self.cfg.lora.lora_alpha,
                target_modules = self.cfg.lora.target_modules,
                lora_dropout = self.cfg.lora.lora_dropout,
                bias = self.cfg.lora.bias,
                task_type = self.cfg.lora.task_type,
            )
            self.audiolm = get_peft_model(self.audiolm, perf_config)
        
        # 4) Build metrics
        self.val_steps = []
        self.train_slide_acc = []
        self.train_steps = []
        self.top1_acc_metric = nn.ModuleList([MulticlassAccuracy(
            self.audiolm.code_size, 
            top_k=1,
            average="micro", multidim_average="global",
            ignore_index=self.cfg.lm.code_size, # ignore EOS token prediction
        ) for _ in range(self.audiolm.code_depth)])
        self.top10_acc_metric = nn.ModuleList([MulticlassAccuracy(
            self.audiolm.code_size,
            top_k=10,
            average="micro", multidim_average="global",
            ignore_index=self.cfg.lm.code_size,
        ) for _ in range(self.audiolm.code_depth)])

        self.epoch = 0
        print("++++++++++++++++ training <song> +++++++++++++++++")

    # TODO: move this part to loader
    def generate_mask_and_end_token(self, x, sequence_lengths, end_id=16384):
        batch_size = sequence_lengths.size(0)
        max_length = x.size(2)

        # pad one frame, if the maximum sequence length is equal to the input length
        if max_length == sequence_lengths.max():
            x = F.pad(x, (0, 1), value=end_id)
        max_length = x.size(2)

        if max_length <= sequence_lengths.max() + 1:
            sequence_lengths = sequence_lengths - (sequence_lengths.max()+1 - max_length)

        # Add end token to x according to the sequence length
        x[torch.arange(batch_size), :, sequence_lengths] = end_id
        sequence_lengths += 1

        mask = torch.arange(max_length).expand(batch_size, max_length) < sequence_lengths.unsqueeze(1)
        mask = mask.to(x.device)
        mask_3d = mask.unsqueeze(1).expand(batch_size, x.size(1), max_length)
        x = torch.where(mask_3d, x, end_id+1)
        return x, mask_3d

    @torch.no_grad()
    def preprocess_batch(self, batch):  # this function is usually called during training
        # 处理 dataloader 返回的数据
        audio, text_lyric, time_stamp, structure_dur, prompt_audio, structure_labels = batch

        dur, valid_st, valid_et = zip(*time_stamp)
        
        if self.audio_tokenizer is not None:
            # only used in inference
            self.audio_tokenizer.eval()
            with torch.no_grad():
                with torch.cuda.amp.autocast(enabled=False):
                    audio_tokens, scale = self.audio_tokenizer.encode(audio)
                audio_tokens = audio_tokens[:,:self.cfg.lm.code_depth,:]
                audio_tokens = audio_tokens.long()
        else:
            audio_tokens = audio.long()
        
        token_dur = (torch.Tensor(dur) * self.cfg.audio_tokenizer_frame_rate).int()
        audio_tokens, audio_padding_mask = self.generate_mask_and_end_token(audio_tokens, token_dur, 
                                                                            end_id=self.audiolm.eos_token_id)
        condition_tensors = self.audiolm.prepare_condition_tensors(batch_size=len(text_lyric),
                                                                   text=text_lyric, audio_qt_emb=prompt_audio)

        return condition_tensors, audio_tokens, audio_padding_mask

    def get_time(self):
        # 获取当前的日期和时间
        now = datetime.now()

        # 使用strftime函数格式化日期和时间
        formatted_now = now.strftime("%Y-%m-%d %H:%M:%S.%f")
        return formatted_now

    def training_step(self, batch, batch_idx):
        # 1) data processing
        condition_tensors, audio_tokens, padding_mask = self.preprocess_batch(batch)
        
        # 2) compute model predictions (model forward)
        model_output = self.audiolm.compute_predictions(audio_tokens, condition_tensors, 
                                                        training_steps=self.global_step)  # this input can be ignored        
        logits = model_output.logits.float()
        mask = padding_mask & model_output.mask
        
        # 3) compute loss (float)
        with torch.cuda.amp.autocast(enabled=False):
            ce, ce_per_codebook = self._compute_cross_entropy(logits, audio_tokens, mask)
        
        total_loss = ce
        if torch.isnan(total_loss):
            print(self.trainer.global_rank, ce, padding_mask, batch[1])
            print('--------------------------------------------------------------')
            return None
            # torchaudio.save("error_rank{}.wav".format(self.trainer.global_rank), batch[0][:,0].cpu(), 24000)
            # import pdb; pdb.set_trace()
        # 4) compute metrics and log
        metrics = {}
        self.log('ce', ce, prog_bar=True) 
        metrics['ppl'] = torch.exp(ce)
        for k, ce_q in enumerate(ce_per_codebook):
            metrics[f'ce_q{k + 1}'] = ce_q
            metrics[f'ppl_q{k + 1}'] = torch.exp(ce_q)

        masked_labels = audio_tokens.masked_fill(~mask, value=self.cfg.lm.code_size)
        metrics['acc'] = []
        for k in range(self.audiolm.code_depth):
            metrics['acc'].append(self.top1_acc_metric[k](logits[:, k].transpose(1,2).detach(), 
                                                          masked_labels[:, k]).item())
        metrics['acc'] = torch.mean(torch.Tensor(metrics['acc'])).item()

        self.train_steps.append({'ce': ce.detach().cpu().item(), 'acc': metrics['acc']})        
        self.log('train_acc', metrics['acc']+1e-8, prog_bar=True)
        self.log('lr', self.trainer.optimizers[0].param_groups[0]['lr'], prog_bar=True)  
        self.log_dict(metrics)

        return total_loss
    
    @torch.no_grad()
    def validation_step(self, batch, batch_idx):
        # 1) data processing
        condition_tensors, audio_tokens, padding_mask = self.preprocess_batch(batch)

        # 2) compute model predictions
        model_output = self.audiolm.compute_predictions(audio_tokens, condition_tensors)  
        logits = model_output.logits
        mask = padding_mask & model_output.mask
        
        # 3) compute loss and metrics
        ce, ce_per_codebook = self._compute_cross_entropy(logits, audio_tokens, mask)
        metrics = {}   
        metrics['val_ce'] = ce
        metrics['val_ppl'] = torch.exp(ce)
        for k, ce_q in enumerate(ce_per_codebook):
            metrics[f'val_ce_q{k + 1}'] = ce_q
            metrics[f'val_ppl_q{k + 1}'] = torch.exp(ce_q)
        masked_labels = audio_tokens.masked_fill(~mask, value=self.cfg.lm.code_size)

        for k in range(self.audiolm.code_depth):
            self.top1_acc_metric[k].update(logits[:, k].transpose(1,2).detach(), masked_labels[:,k]) #* total_length
            self.top10_acc_metric[k].update(logits[:, k].transpose(1,2).detach(), masked_labels[:,k])
        self.val_steps.append(metrics)
            
        metrics['acc'] = []
        metrics['acc_top10'] = []
        for k in range(self.audiolm.code_depth):
            metrics['acc'].append(self.top1_acc_metric[k](logits[:, k].transpose(1,2).detach(), masked_labels[:,k]).item())
            metrics['acc_top10'].append(self.top10_acc_metric[k](logits[:, k].transpose(1,2).detach(), masked_labels[:,k]).item())
        metrics['acc'] = torch.mean(torch.Tensor(metrics['acc']))
        metrics['acc_top10'] = torch.mean(torch.Tensor(metrics['acc_top10'])) 
        
        return metrics['acc']


    def on_validation_epoch_end(self) -> None:        
        final_metrics = {}
        for i in self.val_steps:
            for k in i:
                final_metrics[k] = final_metrics.get(k, []) + [i[k]]
        final_metrics = {k: sum(v) / len(v) for k,v in list(final_metrics.items())}
        self.log_dict(final_metrics)

        q_acc = []
        q_acc10 = []
        for i in range(self.audiolm.code_depth):
            q_acc.append(self.top1_acc_metric[i].compute())
            q_acc10.append(self.top10_acc_metric[i].compute())
            self.log(f"val_Top1Acc_{i}", q_acc[-1])
            self.log(f"val_Top10Acc_{i}", q_acc10[-1])
            self.top1_acc_metric[i].reset()
            self.top10_acc_metric[i].reset()
        
        self.log('val_Top1Acc', sum(q_acc) / self.audiolm.code_depth)
        self.log('val_Top10Acc', sum(q_acc10) / self.audiolm.code_depth)

        return super().on_validation_epoch_end()


    def on_validation_epoch_start(self) -> None:
        self.val_steps = []
        for i in range(self.audiolm.code_depth):
            self.top1_acc_metric[i].reset()
            self.top10_acc_metric[i].reset()

        if len(self.train_steps) > 0:
            train_metrics = {}
            for i in self.train_steps:
                for k in i:
                    train_metrics[k] = train_metrics.get(k, []) + [i[k]]
            train_metrics = {k: sum(v) / len(v) for k,v in list(train_metrics.items())}
            self.log('train_summary_Top1Acc', train_metrics['acc'])
            self.log('train_summary_ce', train_metrics['ce'])
            self.train_steps = []

        return super().on_validation_epoch_start()


    # 定义优化器
    def configure_optimizers(self):
        total_updates = self.cfg.optim.epochs * self.cfg.optim.updates_per_epoch
        optim_dict = {}

        param_groups = []
        missing_params = []
        other_params = []
        cnt = 0
        # 去掉开头的‘audiolm.'
        print('before missing len', len(self.missing))
        self.missing = [name.replace('audiolm.', '') for name in self.missing]
        print('after missing len', len(self.missing))
        for name, param in self.audiolm.named_parameters():
            if name in self.missing:
                cnt += 1
                print(name)
                missing_params.append(param)
            else:
                other_params.append(param)
        print(cnt)
        assert cnt == len(self.missing)
        param_groups.append({'params': other_params, 'lr': self.cfg.optim.old_lr})
        param_groups.append({
            'params': missing_params,
            'lr': self.cfg.optim.new_lr  # 为missing参数设置10倍的学习率,你可以调整这个倍数
        })

        if self.cfg.optim.optimizer == "adamw":
            optim_dict['optimizer'] = torch.optim.AdamW(
                param_groups,  # 使用参数分组替代原来的 self.audiolm.parameters()
                betas=tuple(self.cfg.optim.adam.betas),
                weight_decay=self.cfg.optim.adam.weight_decay,
                eps=self.cfg.optim.adam.eps,
            )
        else:
            raise NotImplementedError

        if self.cfg.schedule is None:
            pass
        elif self.cfg.schedule.lr_scheduler == "cosine":
            scheduler = CosineLRScheduler(optim_dict['optimizer'], 
                                          total_steps=total_updates, 
                                          warmup_steps=self.cfg.schedule.cosine.warmup,
                                          lr_min_ratio=self.cfg.schedule.cosine.lr_min_ratio,
                                          cycle_length=self.cfg.schedule.cosine.cycle_length,
                                          )
            optim_dict['lr_scheduler'] = {"scheduler": scheduler, "interval": "step"}
        else:
            raise NotImplementedError
        
        return optim_dict

    
    def _compute_cross_entropy(
        self, logits: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor
    ) -> tp.Tuple[torch.Tensor, tp.List[torch.Tensor]]:
        """Compute cross entropy between multi-codebook targets and model's logits.
        The cross entropy is computed per codebook to provide codebook-level cross entropy.
        Valid timesteps for each of the codebook are pulled from the mask, where invalid
        timesteps are set to 0.

        Args:
            logits (torch.Tensor): Model's logits of shape [B, K, T, card].
            targets (torch.Tensor): Target codes, of shape [B, K, T].
            mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T].
        Returns:
            ce (torch.Tensor): Cross entropy averaged over the codebooks
            ce_per_codebook (list of torch.Tensor): Cross entropy per codebook (detached).
        """
        # import pdb; pdb.set_trace()
        B, K, T = targets.shape
        assert logits.shape[:-1] == targets.shape
        assert mask.shape == targets.shape
        ce = torch.zeros([], device=targets.device)
        ce_per_codebook: tp.List[torch.Tensor] = []
        for k in range(K):
            logits_k = logits[:, k, ...].contiguous().view(-1, logits.size(-1))  # [B x T, card]
            targets_k = targets[:, k, ...].contiguous().view(-1)  # [B x T]
            mask_k = mask[:, k, ...].contiguous().view(-1)  # [B x T]
            ce_targets = targets_k[mask_k]
            ce_logits = logits_k[mask_k]
            q_ce = F.cross_entropy(ce_logits, ce_targets)
            ce += q_ce
            ce_per_codebook.append(q_ce.detach())
        # average cross entropy across codebooks
        ce = ce / K
        return ce, ce_per_codebook


class CodecLM_PL_FT(pl.LightningModule):
    def __init__(self, cfg):
        super().__init__()

        self.cfg = cfg
        
        # 1) Build audio tokenizer (usually None during training)
        self.audio_tokenizer = builders.get_audio_tokenizer_model(self.cfg)
        if self.audio_tokenizer is not None:
            for param in self.audio_tokenizer.parameters():
                param.requires_grad = False
        
        # 2) Build LM
        self.audiolm = builders.get_lm_model(self.cfg)
        
        # 3) Load pretrained checkpoint (if any)
        if self.cfg.use_pretrained == 'deepspeed':
            checkpoint = torch.load(self.cfg.pretrained.deepspeed_checkpoint,  map_location='cpu')
            missing, unexpected = self.load_state_dict(checkpoint, strict=False)
            print(f'-------------Missing--------------\n{missing}')
            print(f'-------------Unexpected--------------\n{unexpected}')
            print("successfully load deepspeed pretrained model {}".format(self.cfg.pretrained.deepspeed_checkpoint))

        # 4) Build metrics
        self.val_steps = []
        self.train_slide_acc = []
        self.train_steps = []
        self.top1_acc_metric = nn.ModuleList([MulticlassAccuracy(
            self.audiolm.code_size, 
            top_k=1,
            average="micro", multidim_average="global",
            ignore_index=self.cfg.lm.code_size, # ignore EOS token prediction
        ) for _ in range(self.audiolm.code_depth)])
        self.top10_acc_metric = nn.ModuleList([MulticlassAccuracy(
            self.audiolm.code_size,
            top_k=10,
            average="micro", multidim_average="global",
            ignore_index=self.cfg.lm.code_size,
        ) for _ in range(self.audiolm.code_depth)])

        self.epoch = 0
        print("++++++++++++++++ training <song> +++++++++++++++++")

    # TODO: move this part to loader
    def generate_mask_and_end_token(self, x, sequence_lengths, end_id=16384):
        batch_size = sequence_lengths.size(0)
        max_length = x.size(2)

        # pad one frame, if the maximum sequence length is equal to the input length
        if max_length == sequence_lengths.max():
            x = F.pad(x, (0, 1), value=end_id)
        max_length = x.size(2)

        if max_length <= sequence_lengths.max() + 1:
            sequence_lengths = sequence_lengths - (sequence_lengths.max()+1 - max_length)

        # Add end token to x according to the sequence length
        x[torch.arange(batch_size), :, sequence_lengths] = end_id
        sequence_lengths += 1

        mask = torch.arange(max_length).expand(batch_size, max_length) < sequence_lengths.unsqueeze(1)
        mask = mask.to(x.device)
        mask_3d = mask.unsqueeze(1).expand(batch_size, x.size(1), max_length)
        x = torch.where(mask_3d, x, end_id+1)
        return x, mask_3d

    @torch.no_grad()
    def preprocess_batch(self, batch):  # this function is usually called during training
        # 处理 dataloader 返回的数据
        audio, text_lyric, time_stamp, lang_type, prompt_audio = batch        
        dur, valid_st, valid_et = zip(*time_stamp)
        
        if self.audio_tokenizer is not None:
            # only used in inference
            self.audio_tokenizer.eval()
            with torch.no_grad():
                with torch.cuda.amp.autocast(enabled=False):
                    audio_tokens, scale = self.audio_tokenizer.encode(audio)
                audio_tokens = audio_tokens[:,:self.cfg.lm.code_depth,:]
                audio_tokens = audio_tokens.long()
        else:
            audio_tokens = audio.long()
        
        token_dur = (torch.Tensor(dur) * self.cfg.audio_tokenizer_frame_rate).int()

        audio_tokens, audio_padding_mask = self.generate_mask_and_end_token(audio_tokens, token_dur, 
                                                                            end_id=self.audiolm.eos_token_id)
        condition_tensors = self.audiolm.prepare_condition_tensors(batch_size=len(text_lyric),
                                                                   text=text_lyric, audio_qt_emb=prompt_audio)

        return condition_tensors, audio_tokens, audio_padding_mask

    def get_time(self):
        # 获取当前的日期和时间
        now = datetime.now()

        # 使用strftime函数格式化日期和时间
        formatted_now = now.strftime("%Y-%m-%d %H:%M:%S.%f")
        return formatted_now

    def training_step(self, batch, batch_idx):
        # 1) data processing
        condition_tensors, audio_tokens, padding_mask = self.preprocess_batch(batch)
        
        # 2) compute model predictions (model forward)
        model_output = self.audiolm.compute_predictions(audio_tokens, condition_tensors, 
                                                        training_steps=self.global_step)  # this input can be ignored        
        logits = model_output.logits.float()
        mask = padding_mask & model_output.mask
        
        # 3) compute loss (float)
        with torch.cuda.amp.autocast(enabled=False):
            ce, ce_per_codebook = self._compute_cross_entropy(logits, audio_tokens, mask)
        
        total_loss = ce
        if torch.isnan(total_loss):
            print(self.trainer.global_rank, ce, padding_mask, batch[1])
            # print('------------------------------------------------------------------------')
            torchaudio.save("error_rank{}.wav".format(self.trainer.global_rank), batch[0][:,0].cpu(), 24000)
            import pdb; pdb.set_trace()
            return None

        # 4) compute metrics and log
        metrics = {}
        self.log('ce', ce, prog_bar=True) 
        metrics['ppl'] = torch.exp(ce)
        for k, ce_q in enumerate(ce_per_codebook):
            metrics[f'ce_q{k + 1}'] = ce_q
            metrics[f'ppl_q{k + 1}'] = torch.exp(ce_q)

        masked_labels = audio_tokens.masked_fill(~mask, value=self.cfg.lm.code_size)
        metrics['acc'] = []
        for k in range(self.audiolm.code_depth):
            metrics['acc'].append(self.top1_acc_metric[k](logits[:, k].transpose(1,2).detach(), 
                                                          masked_labels[:, k]).item())
        metrics['acc'] = torch.mean(torch.Tensor(metrics['acc'])).item()

        self.train_steps.append({'ce': ce.detach().cpu().item(), 'acc': metrics['acc']})        
        self.log('train_acc', metrics['acc']+1e-8, prog_bar=True)
        self.log('lr', self.trainer.optimizers[0].param_groups[0]['lr'], prog_bar=True)  
        self.log_dict(metrics)

        return total_loss
    
    @torch.no_grad()
    def validation_step(self, batch, batch_idx):
        # 1) data processing
        condition_tensors, audio_tokens, padding_mask = self.preprocess_batch(batch)

        # 2) compute model predictions
        model_output = self.audiolm.compute_predictions(audio_tokens, condition_tensors)  
        logits = model_output.logits
        mask = padding_mask & model_output.mask
        
        # 3) compute loss and metrics
        ce, ce_per_codebook = self._compute_cross_entropy(logits, audio_tokens, mask)
        metrics = {}   
        metrics['val_ce'] = ce
        metrics['val_ppl'] = torch.exp(ce)
        for k, ce_q in enumerate(ce_per_codebook):
            metrics[f'val_ce_q{k + 1}'] = ce_q
            metrics[f'val_ppl_q{k + 1}'] = torch.exp(ce_q)
        masked_labels = audio_tokens.masked_fill(~mask, value=self.cfg.lm.code_size)

        for k in range(self.audiolm.code_depth):
            self.top1_acc_metric[k].update(logits[:, k].transpose(1,2).detach(), masked_labels[:,k]) #* total_length
            self.top10_acc_metric[k].update(logits[:, k].transpose(1,2).detach(), masked_labels[:,k])
        self.val_steps.append(metrics)
        metrics['acc'] = []
        metrics['acc_top10'] = []
        for k in range(self.audiolm.code_depth):
            metrics['acc'].append(self.top1_acc_metric[k](logits[:, k].transpose(1,2).detach(), masked_labels[:,k]).item())
            metrics['acc_top10'].append(self.top10_acc_metric[k](logits[:, k].transpose(1,2).detach(), masked_labels[:,k]).item())
        metrics['acc'] = torch.mean(torch.Tensor(metrics['acc']))
        metrics['acc_top10'] = torch.mean(torch.Tensor(metrics['acc_top10']))
        
        return metrics['acc']

    def on_validation_epoch_end(self) -> None:        
        final_metrics = {}
        for i in self.val_steps:
            for k in i:
                final_metrics[k] = final_metrics.get(k, []) + [i[k]]
        final_metrics = {k: sum(v) / len(v) for k,v in list(final_metrics.items())}
        self.log_dict(final_metrics)

        q_acc = []
        q_acc10 = []
        for i in range(self.audiolm.code_depth):
            q_acc.append(self.top1_acc_metric[i].compute())
            q_acc10.append(self.top10_acc_metric[i].compute())
            self.log(f"val_Top1Acc_{i}", q_acc[-1])
            self.log(f"val_Top10Acc_{i}", q_acc10[-1])
            self.top1_acc_metric[i].reset()
            self.top10_acc_metric[i].reset()
        
        self.log('val_Top1Acc', sum(q_acc) / self.audiolm.code_depth)
        self.log('val_Top10Acc', sum(q_acc10) / self.audiolm.code_depth)

        return super().on_validation_epoch_end()


    def on_validation_epoch_start(self) -> None:
        self.val_steps = []
        for i in range(self.audiolm.code_depth):
            self.top1_acc_metric[i].reset()
            self.top10_acc_metric[i].reset()

        if len(self.train_steps) > 0:
            train_metrics = {}
            for i in self.train_steps:
                for k in i:
                    train_metrics[k] = train_metrics.get(k, []) + [i[k]]
            train_metrics = {k: sum(v) / len(v) for k,v in list(train_metrics.items())}
            self.log('train_summary_Top1Acc', train_metrics['acc'])
            self.log('train_summary_ce', train_metrics['ce'])
            self.train_steps = []

        return super().on_validation_epoch_start()


    # 定义优化器
    def configure_optimizers(self):
        total_updates = self.cfg.optim.epochs * self.cfg.optim.updates_per_epoch
        optim_dict = {}

        if self.cfg.optim.optimizer == "adamw":
            optim_dict['optimizer'] = torch.optim.AdamW(
                self.audiolm.parameters(),
                lr=self.cfg.optim.lr,
                betas=tuple(self.cfg.optim.adam.betas),
                weight_decay=self.cfg.optim.adam.weight_decay,
                eps=self.cfg.optim.adam.eps,
            )
        else:
            raise NotImplementedError

        if self.cfg.schedule is None:
            pass
        elif self.cfg.schedule.lr_scheduler == "cosine":
            scheduler = CosineLRScheduler(optim_dict['optimizer'], 
                                          total_steps=total_updates, 
                                          warmup_steps=self.cfg.schedule.cosine.warmup,
                                          lr_min_ratio=self.cfg.schedule.cosine.lr_min_ratio,
                                          cycle_length=self.cfg.schedule.cosine.cycle_length,
                                          )
            optim_dict['lr_scheduler'] = {"scheduler": scheduler, "interval": "step"}
        else:
            raise NotImplementedError
        
        return optim_dict

    
    def _compute_cross_entropy(
        self, logits: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor
    ) -> tp.Tuple[torch.Tensor, tp.List[torch.Tensor]]:
        """Compute cross entropy between multi-codebook targets and model's logits.
        The cross entropy is computed per codebook to provide codebook-level cross entropy.
        Valid timesteps for each of the codebook are pulled from the mask, where invalid
        timesteps are set to 0.

        Args:
            logits (torch.Tensor): Model's logits of shape [B, K, T, card].
            targets (torch.Tensor): Target codes, of shape [B, K, T].
            mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T].
        Returns:
            ce (torch.Tensor): Cross entropy averaged over the codebooks
            ce_per_codebook (list of torch.Tensor): Cross entropy per codebook (detached).
        """
        # import pdb; pdb.set_trace()
        B, K, T = targets.shape
        assert logits.shape[:-1] == targets.shape
        assert mask.shape == targets.shape
        ce = torch.zeros([], device=targets.device)
        ce_per_codebook: tp.List[torch.Tensor] = []
        for k in range(K):
            logits_k = logits[:, k, ...].contiguous().view(-1, logits.size(-1))  # [B x T, card]
            targets_k = targets[:, k, ...].contiguous().view(-1)  # [B x T]
            mask_k = mask[:, k, ...].contiguous().view(-1)  # [B x T]
            ce_targets = targets_k[mask_k]
            ce_logits = logits_k[mask_k]
            q_ce = F.cross_entropy(ce_logits, ce_targets)
            ce += q_ce
            ce_per_codebook.append(q_ce.detach())
        # average cross entropy across codebooks
        ce = ce / K
        return ce, ce_per_codebook

class CosineLRScheduler(_LRScheduler):# 
    """Cosine LR scheduler.

    Args:
        optimizer (Optimizer): Torch optimizer.
        warmup_steps (int): Number of warmup steps.
        total_steps (int): Total number of steps.
        lr_min_ratio (float): Minimum learning rate.
        cycle_length (float): Cycle length.
    """
    def __init__(self, optimizer: Optimizer, total_steps: int, warmup_steps: int,
                 lr_min_ratio: float = 0.0, cycle_length: float = 1.0):
        self.warmup_steps = warmup_steps
        assert self.warmup_steps >= 0
        self.total_steps = total_steps
        assert self.total_steps >= 0
        self.lr_min_ratio = lr_min_ratio
        self.cycle_length = cycle_length
        super().__init__(optimizer)

    def _get_sched_lr(self, lr: float, step: int):
        if step < self.warmup_steps:
            lr_ratio = step / self.warmup_steps
            lr = lr_ratio * lr
        elif step <= self.total_steps:
            s = (step - self.warmup_steps) / (self.total_steps - self.warmup_steps)
            lr_ratio = self.lr_min_ratio + 0.5 * (1 - self.lr_min_ratio) * \
                (1. + math.cos(math.pi * s / self.cycle_length))
            lr = lr_ratio * lr
        else:
            lr_ratio = self.lr_min_ratio
            lr = lr_ratio * lr
        return lr

    def get_lr(self):
        return [self._get_sched_lr(lr, self.last_epoch) for lr in self.base_lrs]