Spaces:
Running
on
L40S
Running
on
L40S
File size: 39,369 Bytes
258fd02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 |
import typing as tp
import torch
import torch.nn as nn
from dataclasses import dataclass, field, fields
from itertools import chain
import warnings
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from codeclm.utils.utils import length_to_mask, collate
from codeclm.modules.streaming import StreamingModule
from collections import defaultdict
from copy import deepcopy
ConditionType = tp.Tuple[torch.Tensor, torch.Tensor] # condition, mask
# ================================================================
# Condition and Condition attributes definitions
# ================================================================
class AudioCondition(tp.NamedTuple):
wav: torch.Tensor
length: torch.Tensor
sample_rate: tp.List[int]
path: tp.List[tp.Optional[str]] = []
seek_time: tp.List[tp.Optional[float]] = []
@dataclass
class ConditioningAttributes:
text: tp.Dict[str, tp.Optional[str]] = field(default_factory=dict)
audio: tp.Dict[str, AudioCondition] = field(default_factory=dict)
def __getitem__(self, item):
return getattr(self, item)
@property
def text_attributes(self):
return self.text.keys()
@property
def audio_attributes(self):
return self.audio.keys()
@property
def attributes(self):
return {
"text": self.text_attributes,
"audio": self.audio_attributes,
}
def to_flat_dict(self):
return {
**{f"text.{k}": v for k, v in self.text.items()},
**{f"audio.{k}": v for k, v in self.audio.items()},
}
@classmethod
def from_flat_dict(cls, x):
out = cls()
for k, v in x.items():
kind, att = k.split(".")
out[kind][att] = v
return out
# ================================================================
# Conditioner (tokenize and encode raw conditions) definitions
# ================================================================
class BaseConditioner(nn.Module):
"""Base model for all conditioner modules.
We allow the output dim to be different than the hidden dim for two reasons:
1) keep our LUTs small when the vocab is large;
2) make all condition dims consistent.
Args:
dim (int): Hidden dim of the model.
output_dim (int): Output dim of the conditioner.
"""
def __init__(self, dim: int, output_dim: int, input_token = False, padding_idx=0):
super().__init__()
self.dim = dim
self.output_dim = output_dim
if input_token:
self.output_proj = nn.Embedding(dim, output_dim, padding_idx)
else:
self.output_proj = nn.Linear(dim, output_dim)
def tokenize(self, *args, **kwargs) -> tp.Any:
"""Should be any part of the processing that will lead to a synchronization
point, e.g. BPE tokenization with transfer to the GPU.
The returned value will be saved and return later when calling forward().
"""
raise NotImplementedError()
def forward(self, inputs: tp.Any) -> ConditionType:
"""Gets input that should be used as conditioning (e.g, genre, description or a waveform).
Outputs a ConditionType, after the input data was embedded as a dense vector.
Returns:
ConditionType:
- A tensor of size [B, T, D] where B is the batch size, T is the length of the
output embedding and D is the dimension of the embedding.
- And a mask indicating where the padding tokens.
"""
raise NotImplementedError()
class TextConditioner(BaseConditioner):
...
class PhonemeTokenizerConditioner(TextConditioner):
def __init__(self,
output_dim: int,
vocab_list,
max_len = 600,
max_sentence_per_structure = 50,
structure_tokens=None,
structure_split_tokens=[','],
sentence_split_tokens=['.'],
mode='sum',
structure_output_dim = 64,
sentence_output_dim = 64,
max_duration = 120,
):
self.vocab_list = vocab_list
self.max_len = max_len
self.mode = mode
self.max_sentence_per_structure = max_sentence_per_structure
voc_size = len(self.vocab_list)
if structure_tokens is None:
structure_tokens = [i for i in vocab_list if len(i) > 1 and i[0] == '[' and i[-1] == ']']
self.structure_token_ids = [vocab_list.index(i) for i in structure_tokens if i in vocab_list]
self.structure_split_token_ids = [vocab_list.index(i) for i in structure_split_tokens]
self.sentence_split_token_ids = [vocab_list.index(i) for i in sentence_split_tokens]
# here initialize a output_proj (nn.Embedding) layer
# By default the first vocab is "" (null)
if mode == 'sum':
content_output_dim = output_dim
sentence_output_dim = output_dim
structure_output_dim = output_dim
else: # concat'
raise NotImplementedError("concat 模式还未实现")
# content_output_dim = output_dim - sentence_output_dim - structure_output_dim # by default
super().__init__(voc_size, content_output_dim, input_token=True, padding_idx=0)
self.special_emb = nn.Embedding(voc_size, structure_output_dim, padding_idx=0)
self.blank_emb = nn.Parameter(torch.zeros(1, output_dim), requires_grad=False)
# the first index is "empty structure" token
self.sentence_idx_in_structure_emb = nn.Embedding(max_sentence_per_structure, sentence_output_dim)
self.sentence_reidx_in_structure_emb = nn.Embedding(max_sentence_per_structure, sentence_output_dim)
print("max_len", self.max_len)
print(self.structure_token_ids)
self.resolution = max_duration / max_len # e.g., 120 / 600 = 0.2s
print(self.__class__, f"resolution = {self.resolution}")
def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]:
inputs = []
for xx in x:
xx = '' if xx is None else xx
vocab_id = [self.vocab_list.index(item) for item in xx.split(" ") if item in self.vocab_list]
inputs.append(torch.tensor(vocab_id).long()) # [T]
return inputs
def forward(self, batch_tokens: tp.List, structure_dur = None) -> ConditionType:
"""
Encode token_id into three types of embeddings:
1) content embedding: phoneme only (or meaningful contents to be sung out)
2) structure embedding: structure / separation embeddings, including structures (verse/chorus/...), separators (. / ,)
The two above share the same embedding layer, can be changed to separate embedding layers.
3) sentence_idx embedding (per structure):
"""
embeds_batch = []
for b in range(len(batch_tokens)):
tokens = batch_tokens[b]
content_tokens = torch.zeros_like(tokens)
special_tokens = torch.zeros_like(tokens)
sentence_idx_in_structure_tokens = torch.zeros_like(tokens)
sentence_reidx_in_structure_tokens = torch.zeros_like(tokens)
current_sentence_in_structure_idx = 1
current_structure = 0
for i in range(tokens.shape[-1]):
token = tokens[i]
if token in self.structure_token_ids: # structure token
# only update structure token, leave content and sentence index token null (default 0)
special_tokens[i] = token
content_tokens[i] = token
current_structure = token
current_sentence_in_structure_idx = 1
sentence_idx_in_structure_tokens[i] = 0
elif token in self.sentence_split_token_ids: # utterance split token
# only update structure token, leave content and sentence index token null (default 0)
# add up sentence index
special_tokens[i] = current_structure
content_tokens[i] = token
sentence_idx_in_structure_tokens[i] = min(current_sentence_in_structure_idx, self.max_sentence_per_structure - 1)
current_sentence_in_structure_idx += 1
elif token in self.structure_split_token_ids: # structure split token
# update structure token (current structure), content token (current token),
# blank index token
content_tokens[i] = token
special_tokens[i] = current_structure
sentence_idx_in_structure_tokens[i] = sentence_idx_in_structure_tokens[i-1]
else: # content tokens
content_tokens[i] = token
special_tokens[i] = current_structure
sentence_idx_in_structure_tokens[i] = min(current_sentence_in_structure_idx, self.max_sentence_per_structure - 1)
# 反推
current_sentence_num = sentence_idx_in_structure_tokens[-1]
for i in range(tokens.shape[-1]-1,-1,-1):
if current_sentence_num != 0:
sentence_reidx_in_structure_tokens[i] = min(current_sentence_num + 1 - sentence_idx_in_structure_tokens[i], self.max_sentence_per_structure - 1)
if sentence_idx_in_structure_tokens[i] == 0 and i > 0:
current_sentence_num = sentence_idx_in_structure_tokens[i-1]
# print("tokens", tokens.max(), tokens.min())
# print("special tokens", special_tokens.max(), special_tokens.min())
# print("sentence idx in structure", sentence_idx_in_structure_tokens.max(), sentence_idx_in_structure_tokens.min())
device = self.output_proj.weight.device
# import pdb; pdb.set_trace()
content_embeds = self.output_proj(content_tokens.to(device)) # [T, N]
structure_embeds = self.output_proj(special_tokens.to(device))
# sentence_idx_embeds = self.sentence_idx_in_structure_emb(sentence_idx_in_structure_tokens.to(device))
sentence_idx_embeds = self.sentence_idx_in_structure_emb(sentence_idx_in_structure_tokens.to(device)) + self.sentence_reidx_in_structure_emb(sentence_reidx_in_structure_tokens.to(device))
if self.mode == 'sum':
embeds = content_embeds + structure_embeds + sentence_idx_embeds
else:
embeds = torch.cat((content_embeds, structure_embeds, sentence_idx_embeds), -1) # [T, N]
embeds_batch.append(embeds)
# set batch_size = 1, [B, T, N]
if self.max_len is not None:
max_len = self.max_len
else:
max_len = max([e.shape[0] for e in embeds_batch])
embeds, mask = self.pad_2d_tensor(embeds_batch, max_len)
return embeds, embeds, mask
def pad_2d_tensor(self, xs, max_len):
new_tensor = []
new_mask = []
for x in xs:
seq_len, dim = x.size()
pad_len = max_len - seq_len
if pad_len > 0:
pad_tensor = self.blank_emb.repeat(pad_len, 1).to(x.device) # T, D
padded_tensor = torch.cat([x, pad_tensor], dim=0)
mask = torch.cat((torch.ones_like(x[:, 0]),
torch.zeros_like(pad_tensor[:, 0])), 0) # T
elif pad_len < 0:
padded_tensor = x[:max_len]
mask = torch.ones_like(padded_tensor[:, 0])
else:
padded_tensor = x
mask = torch.ones_like(x[:, 0])
new_tensor.append(padded_tensor)
new_mask.append(mask)
# [B, T, D] & [B, T]
return torch.stack(new_tensor, 0), torch.stack(new_mask, 0)
class QwTokenizerConditioner(TextConditioner):
def __init__(self, output_dim: int,
token_path = "",
max_len = 300,
add_token_list=[]): #""
from transformers import Qwen2Tokenizer
self.text_tokenizer = Qwen2Tokenizer.from_pretrained(token_path)
if add_token_list != []:
self.text_tokenizer.add_tokens(add_token_list, special_tokens=True)
voc_size = len(self.text_tokenizer.get_vocab())
# here initialize a output_proj (nn.Embedding) layer
super().__init__(voc_size, output_dim, input_token=True, padding_idx=151643)
self.max_len = max_len
self.padding_idx =' <|endoftext|>'
vocab = self.text_tokenizer.get_vocab()
# struct是全部的结构
struct_tokens = [i for i in add_token_list if i[0]=='[' and i[-1]==']']
self.struct_token_ids = [vocab[i] for i in struct_tokens]
self.pad_token_idx = 151643
self.structure_emb = nn.Embedding(200, output_dim, padding_idx=0)
# self.split_token_id = vocab["."]
print("all structure tokens: ", {self.text_tokenizer.convert_ids_to_tokens(i):i for i in self.struct_token_ids})
def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]:
x = ['<|im_start|>' + xi if xi is not None else "<|im_start|>" for xi in x]
# x = [xi if xi is not None else "" for xi in x]
inputs = self.text_tokenizer(x, return_tensors="pt", padding=True)
return inputs
def forward(self, inputs: tp.Dict[str, torch.Tensor]) -> ConditionType:
"""
Add structure embeddings of {verse, chorus, bridge} to text/lyric tokens that
belong to these structures accordingly,
Then delete or keep these structure embeddings.
"""
mask = inputs['attention_mask']
tokens = inputs['input_ids']
B = tokens.shape[0]
is_sp_embed = torch.any(torch.stack([tokens == i for i in self.struct_token_ids], dim=-1),dim=-1)
tp_cover_range = torch.zeros_like(tokens)
for b, is_sp in enumerate(is_sp_embed):
sp_list = torch.where(is_sp)[0].tolist()
sp_list.append(mask[b].sum())
for i, st in enumerate(sp_list[:-1]):
tp_cover_range[b, st: sp_list[i+1]] = tokens[b, st] - 151645
if self.max_len is not None:
if inputs['input_ids'].shape[-1] > self.max_len:
warnings.warn(f"Max len limit ({self.max_len}) Exceed! \
{[self.text_tokenizer.convert_ids_to_tokens(i.tolist()) for i in tokens]} will be cut!")
tokens = self.pad_2d_tensor(tokens, self.max_len, self.pad_token_idx).to(self.output_proj.weight.device)
mask = self.pad_2d_tensor(mask, self.max_len, 0).to(self.output_proj.weight.device)
tp_cover_range = self.pad_2d_tensor(tp_cover_range, self.max_len, 0).to(self.output_proj.weight.device)
device = self.output_proj.weight.device
content_embeds = self.output_proj(tokens.to(device))
structure_embeds = self.structure_emb(tp_cover_range.to(device))
embeds = content_embeds + structure_embeds
return embeds, embeds, mask
def pad_2d_tensor(self, x, max_len, pad_id):
batch_size, seq_len = x.size()
pad_len = max_len - seq_len
if pad_len > 0:
pad_tensor = torch.full((batch_size, pad_len), pad_id, dtype=x.dtype, device=x.device)
padded_tensor = torch.cat([x, pad_tensor], dim=1)
elif pad_len < 0:
padded_tensor = x[:, :max_len]
else:
padded_tensor = x
return padded_tensor
class QwTextConditioner(TextConditioner):
def __init__(self, output_dim: int,
token_path = "",
max_len = 300): #""
from transformers import Qwen2Tokenizer
self.text_tokenizer = Qwen2Tokenizer.from_pretrained(token_path)
voc_size = len(self.text_tokenizer.get_vocab())
# here initialize a output_proj (nn.Embedding) layer
super().__init__(voc_size, output_dim, input_token=True, padding_idx=151643)
self.max_len = max_len
def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]:
x = ['<|im_start|>' + xi if xi is not None else "<|im_start|>" for xi in x]
inputs = self.text_tokenizer(x, return_tensors="pt", padding=True)
return inputs
def forward(self, inputs: tp.Dict[str, torch.Tensor], structure_dur = None) -> ConditionType:
"""
Add structure embeddings of {verse, chorus, bridge} to text/lyric tokens that
belong to these structures accordingly,
Then delete or keep these structure embeddings.
"""
mask = inputs['attention_mask']
tokens = inputs['input_ids']
if self.max_len is not None:
if inputs['input_ids'].shape[-1] > self.max_len:
warnings.warn(f"Max len limit ({self.max_len}) Exceed! \
{[self.text_tokenizer.convert_ids_to_tokens(i.tolist()) for i in tokens]} will be cut!")
tokens = self.pad_2d_tensor(tokens, self.max_len, 151643).to(self.output_proj.weight.device)
mask = self.pad_2d_tensor(mask, self.max_len, 0).to(self.output_proj.weight.device)
embeds = self.output_proj(tokens)
return embeds, embeds, mask
def pad_2d_tensor(self, x, max_len, pad_id):
batch_size, seq_len = x.size()
pad_len = max_len - seq_len
if pad_len > 0:
pad_tensor = torch.full((batch_size, pad_len), pad_id, dtype=x.dtype, device=x.device)
padded_tensor = torch.cat([x, pad_tensor], dim=1)
elif pad_len < 0:
padded_tensor = x[:, :max_len]
else:
padded_tensor = x
return padded_tensor
class AudioConditioner(BaseConditioner):
...
class QuantizedEmbeddingConditioner(AudioConditioner):
def __init__(self, dim: int,
code_size: int,
code_depth: int,
max_len: int,
**kwargs):
super().__init__(dim, dim, input_token=True)
self.code_depth = code_depth
# add 1 for <s> token
self.emb = nn.ModuleList([nn.Embedding(code_size+2, dim, padding_idx=code_size+1) for _ in range(code_depth)])
# add End-Of-Text embedding
self.EOT_emb = nn.Parameter(torch.randn(1, dim), requires_grad=True)
self.layer2_EOT_emb = nn.Parameter(torch.randn(1, dim), requires_grad=True)
self.output_proj = None
self.max_len = max_len
self.vocab_size = code_size
def tokenize(self, x: AudioCondition) -> AudioCondition:
"""no extra ops"""
# wav, length, sample_rate, path, seek_time = x
# assert length is not None
return x #AudioCondition(wav, length, sample_rate, path, seek_time)
def forward(self, x: AudioCondition):
wav, lengths, *_ = x
B = wav.shape[0]
wav = wav.reshape(B, self.code_depth, -1).long()
if wav.shape[2] < self.max_len - 1:
wav = F.pad(wav, [0, self.max_len - 1 - wav.shape[2]], value=self.vocab_size+1)
else:
wav = wav[:, :, :self.max_len-1]
embeds1 = self.emb[0](wav[:, 0])
embeds1 = torch.cat((self.EOT_emb.unsqueeze(0).repeat(B, 1, 1),
embeds1), dim=1)
embeds2 = sum([self.emb[k](wav[:, k]) for k in range(1, self.code_depth)]) # B,T,D
embeds2 = torch.cat((self.layer2_EOT_emb.unsqueeze(0).repeat(B, 1, 1),
embeds2), dim=1)
lengths = lengths + 1
lengths = torch.clamp(lengths, max=self.max_len)
if lengths is not None:
mask = length_to_mask(lengths, max_len=embeds1.shape[1]).int() # type: ignore
else:
mask = torch.ones((B, self.code_depth), device=embeds1.device, dtype=torch.int)
return embeds1, embeds2, mask
# ================================================================
# Aggregate all conditions and corresponding conditioners
# ================================================================
class ConditionerProvider(nn.Module):
"""Prepare and provide conditions given all the supported conditioners.
Args:
conditioners (dict): Dictionary of conditioners.
device (torch.device or str, optional): Device for conditioners and output condition types.
"""
def __init__(self, conditioners: tp.Dict[str, BaseConditioner]):
super().__init__()
self.conditioners = nn.ModuleDict(conditioners)
@property
def text_conditions(self):
return [k for k, v in self.conditioners.items() if isinstance(v, TextConditioner)]
@property
def audio_conditions(self):
return [k for k, v in self.conditioners.items() if isinstance(v, AudioConditioner)]
@property
def has_audio_condition(self):
return len(self.audio_conditions) > 0
def tokenize(self, inputs: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.Any]:
"""Match attributes/audios with existing conditioners in self, and compute tokenize them accordingly.
This should be called before starting any real GPU work to avoid synchronization points.
This will return a dict matching conditioner names to their arbitrary tokenized representations.
Args:
inputs (list[ConditioningAttributes]): List of ConditioningAttributes objects containing
text and audio conditions.
"""
assert all([isinstance(x, ConditioningAttributes) for x in inputs]), (
"Got unexpected types input for conditioner! should be tp.List[ConditioningAttributes]",
f" but types were {set([type(x) for x in inputs])}")
output = {}
text = self._collate_text(inputs)
audios = self._collate_audios(inputs)
assert set(text.keys() | audios.keys()).issubset(set(self.conditioners.keys())), (
f"Got an unexpected attribute! Expected {self.conditioners.keys()}, ",
f"got {text.keys(), audios.keys()}")
for attribute, batch in chain(text.items(), audios.items()):
output[attribute] = self.conditioners[attribute].tokenize(batch)
return output
def forward(self, tokenized: tp.Dict[str, tp.Any], structure_dur = None) -> tp.Dict[str, ConditionType]:
"""Compute pairs of `(embedding, mask)` using the configured conditioners and the tokenized representations.
The output is for example:
{
"genre": (torch.Tensor([B, 1, D_genre]), torch.Tensor([B, 1])),
"description": (torch.Tensor([B, T_desc, D_desc]), torch.Tensor([B, T_desc])),
...
}
Args:
tokenized (dict): Dict of tokenized representations as returned by `tokenize()`.
"""
output = {}
for attribute, inputs in tokenized.items():
if attribute == 'description' and structure_dur is not None:
condition1, condition2, mask = self.conditioners[attribute](inputs, structure_dur = structure_dur)
else:
condition1, condition2, mask = self.conditioners[attribute](inputs)
output[attribute] = (condition1, condition2, mask)
return output
def _collate_text(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.List[tp.Optional[str]]]:
"""Given a list of ConditioningAttributes objects, compile a dictionary where the keys
are the attributes and the values are the aggregated input per attribute.
For example:
Input:
[
ConditioningAttributes(text={"genre": "Rock", "description": "A rock song with a guitar solo"}, wav=...),
ConditioningAttributes(text={"genre": "Hip-hop", "description": "A hip-hop verse"}, audio=...),
]
Output:
{
"genre": ["Rock", "Hip-hop"],
"description": ["A rock song with a guitar solo", "A hip-hop verse"]
}
Args:
samples (list of ConditioningAttributes): List of ConditioningAttributes samples.
Returns:
dict[str, list[str, optional]]: A dictionary mapping an attribute name to text batch.
"""
out: tp.Dict[str, tp.List[tp.Optional[str]]] = defaultdict(list)
texts = [x.text for x in samples]
for text in texts:
for condition in self.text_conditions:
out[condition].append(text[condition])
return out
def _collate_audios(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, AudioCondition]:
"""Generate a dict where the keys are attributes by which we fetch similar audios,
and the values are Tensors of audios according to said attributes.
*Note*: by the time the samples reach this function, each sample should have some audios
inside the "audio" attribute. It should be either:
1. A real audio
2. A null audio due to the sample having no similar audios (nullified by the dataset)
3. A null audio due to it being dropped in a dropout module (nullified by dropout)
Args:
samples (list of ConditioningAttributes): List of ConditioningAttributes samples.
Returns:
dict[str, WavCondition]: A dictionary mapping an attribute name to wavs.
"""
# import pdb; pdb.set_trace()
wavs = defaultdict(list)
lengths = defaultdict(list)
sample_rates = defaultdict(list)
paths = defaultdict(list)
seek_times = defaultdict(list)
out: tp.Dict[str, AudioCondition] = {}
for sample in samples:
for attribute in self.audio_conditions:
wav, length, sample_rate, path, seek_time = sample.audio[attribute]
assert wav.dim() == 3, f"Got wav with dim={wav.dim()}, but expected 3 [1, C, T]"
assert wav.size(0) == 1, f"Got wav [B, C, T] with shape={wav.shape}, but expected B == 1"
wavs[attribute].append(wav.flatten()) # [C*T]
lengths[attribute].append(length)
sample_rates[attribute].extend(sample_rate)
paths[attribute].extend(path)
seek_times[attribute].extend(seek_time)
# stack all wavs to a single tensor
for attribute in self.audio_conditions:
stacked_wav, _ = collate(wavs[attribute], dim=0)
out[attribute] = AudioCondition(
stacked_wav.unsqueeze(1),
torch.cat(lengths[attribute]), sample_rates[attribute],
paths[attribute], seek_times[attribute])
return out
class ConditionFuser(StreamingModule):
"""Condition fuser handles the logic to combine the different conditions
to the actual model input.
Args:
fuse2cond (tp.Dict[str, str]): A dictionary that says how to fuse
each condition. For example:
{
"prepend": ["description"],
"sum": ["genre", "bpm"],
}
"""
FUSING_METHODS = ["sum", "prepend"] #, "cross", "input_interpolate"] (not support in this simplest version)
def __init__(self, fuse2cond: tp.Dict[str, tp.List[str]]):
super().__init__()
assert all([k in self.FUSING_METHODS for k in fuse2cond.keys()]
), f"Got invalid fuse method, allowed methods: {self.FUSING_METHODS}"
self.fuse2cond: tp.Dict[str, tp.List[str]] = fuse2cond
self.cond2fuse: tp.Dict[str, str] = {}
for fuse_method, conditions in fuse2cond.items():
for condition in conditions:
self.cond2fuse[condition] = fuse_method
def forward(
self,
input1: torch.Tensor,
input2: torch.Tensor,
conditions: tp.Dict[str, ConditionType]
) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
"""Fuse the conditions to the provided model input.
Args:
input (torch.Tensor): Transformer input.
conditions (dict[str, ConditionType]): Dict of conditions.
Returns:
tuple[torch.Tensor, torch.Tensor]: The first tensor is the transformer input
after the conditions have been fused. The second output tensor is the tensor
used for cross-attention or None if no cross attention inputs exist.
"""
#import pdb; pdb.set_trace()
B, T, _ = input1.shape
if 'offsets' in self._streaming_state:
first_step = False
offsets = self._streaming_state['offsets']
else:
first_step = True
offsets = torch.zeros(input1.shape[0], dtype=torch.long, device=input1.device)
assert set(conditions.keys()).issubset(set(self.cond2fuse.keys())), \
f"given conditions contain unknown attributes for fuser, " \
f"expected {self.cond2fuse.keys()}, got {conditions.keys()}"
# if 'prepend' mode is used,
# the concatenation order will be the SAME with the conditions in config:
# prepend: ['description', 'prompt_audio'] (then goes the input)
fused_input_1 = input1
fused_input_2 = input2
for fuse_op in self.fuse2cond.keys():
fuse_op_conditions = self.fuse2cond[fuse_op]
if fuse_op == 'sum' and len(fuse_op_conditions) > 0:
for cond in fuse_op_conditions:
this_cond_1, this_cond_2, cond_mask = conditions[cond]
fused_input_1 += this_cond_1
fused_input_2 += this_cond_2
elif fuse_op == 'prepend' and len(fuse_op_conditions) > 0:
if not first_step:
continue
reverse_list = deepcopy(fuse_op_conditions)
reverse_list.reverse()
for cond in reverse_list:
this_cond_1, this_cond_2, cond_mask = conditions[cond]
fused_input_1 = torch.cat((this_cond_1, fused_input_1), dim=1) # concat along T dim
fused_input_2 = torch.cat((this_cond_2, fused_input_2), dim=1) # concat along T dim
elif fuse_op not in self.FUSING_METHODS:
raise ValueError(f"unknown op ({fuse_op})")
if self._is_streaming:
self._streaming_state['offsets'] = offsets + T
return fused_input_1, fused_input_2
# ================================================================
# Condition Dropout
# ================================================================
class DropoutModule(nn.Module):
"""Base module for all dropout modules."""
def __init__(self, seed: int = 1234):
super().__init__()
self.rng = torch.Generator()
self.rng.manual_seed(seed)
class ClassifierFreeGuidanceDropout(DropoutModule):
"""Classifier Free Guidance dropout.
All attributes are dropped with the same probability.
Args:
p (float): Probability to apply condition dropout during training.
seed (int): Random seed.
"""
def __init__(self, p: float, seed: int = 1234):
super().__init__(seed=seed)
self.p = p
def check(self, sample, condition_type, condition):
if condition_type not in ['text', 'audio']:
raise ValueError("dropout_condition got an unexpected condition type!"
f" expected 'text', 'audio' but got '{condition_type}'")
if condition not in getattr(sample, condition_type):
raise ValueError(
"dropout_condition received an unexpected condition!"
f" expected audio={sample.audio.keys()} and text={sample.text.keys()}"
f" but got '{condition}' of type '{condition_type}'!")
def get_null_wav(self, wav, sr=48000) -> AudioCondition:
out = wav * 0 + 16385
return AudioCondition(
wav=out,
length=torch.Tensor([0]).long(),
sample_rate=[sr],)
def dropout_condition(self,
sample: ConditioningAttributes,
condition_type: str,
condition: str) -> ConditioningAttributes:
"""Utility function for nullifying an attribute inside an ConditioningAttributes object.
If the condition is of type "wav", then nullify it using `nullify_condition` function.
If the condition is of any other type, set its value to None.
Works in-place.
"""
self.check(sample, condition_type, condition)
if condition_type == 'audio':
audio_cond = sample.audio[condition]
depth = audio_cond.wav.shape[1]
sample.audio[condition] = self.get_null_wav(audio_cond.wav, sr=audio_cond.sample_rate[0])
else:
sample.text[condition] = None
return sample
def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]:
"""
Args:
samples (list[ConditioningAttributes]): List of conditions.
Returns:
list[ConditioningAttributes]: List of conditions after all attributes were set to None.
"""
# decide on which attributes to drop in a batched fashion
# drop = torch.rand(1, generator=self.rng).item() < self.p
# if not drop:
# return samples
# nullify conditions of all attributes
samples = deepcopy(samples)
for sample in samples:
drop = torch.rand(1, generator=self.rng).item()
if drop<self.p:
for condition_type in ["audio", "text"]:
for condition in sample.attributes[condition_type]:
self.dropout_condition(sample, condition_type, condition)
return samples
def __repr__(self):
return f"ClassifierFreeGuidanceDropout(p={self.p})"
class ClassifierFreeGuidanceDropoutInference(ClassifierFreeGuidanceDropout):
"""Classifier Free Guidance dropout during inference.
All attributes are dropped with the same probability.
Args:
p (float): Probability to apply condition dropout during training.
seed (int): Random seed.
"""
def __init__(self, seed: int = 1234):
super().__init__(p=1, seed=seed)
def dropout_condition_customized(self,
sample: ConditioningAttributes,
condition_type: str,
condition: str,
customized: list = None) -> ConditioningAttributes:
"""Utility function for nullifying an attribute inside an ConditioningAttributes object.
If the condition is of type "audio", then nullify it using `nullify_condition` function.
If the condition is of any other type, set its value to None.
Works in-place.
"""
self.check(sample, condition_type, condition)
if condition_type == 'audio':
audio_cond = sample.audio[condition]
depth = audio_cond.wav.shape[1]
sample.audio[condition] = self.get_null_wav(audio_cond.wav, sr=audio_cond.sample_rate[0])
else:
if customized is None:
sample.text[condition] = None
else:
text_cond = deepcopy(sample.text[condition])
if "structure" in customized:
for _s in ['[inst]', '[outro]', '[intro]', '[verse]', '[chorus]', '[bridge]']:
text_cond = text_cond.replace(_s, "")
text_cond = text_cond.replace(' , ', '')
text_cond = text_cond.replace(" ", " ")
if '.' in customized:
text_cond = text_cond.replace(" . ", " ")
text_cond = text_cond.replace(".", " ")
sample.text[condition] = text_cond
return sample
def forward(self, samples: tp.List[ConditioningAttributes],
condition_types=["wav", "text"],
customized=None,
) -> tp.List[ConditioningAttributes]:
"""
100% dropout some condition attributes (description, prompt_wav) or types (text, wav) of
samples during inference.
Args:
samples (list[ConditioningAttributes]): List of conditions.
Returns:
list[ConditioningAttributes]: List of conditions after all attributes were set to None.
"""
new_samples = deepcopy(samples)
for condition_type in condition_types:
for sample in new_samples:
for condition in sample.attributes[condition_type]:
self.dropout_condition_customized(sample, condition_type, condition, customized)
return new_samples
class AttributeDropout(ClassifierFreeGuidanceDropout):
"""Dropout with a given probability per attribute.
This is different from the behavior of ClassifierFreeGuidanceDropout as this allows for attributes
to be dropped out separately. For example, "artist" can be dropped while "genre" remains.
This is in contrast to ClassifierFreeGuidanceDropout where if "artist" is dropped "genre"
must also be dropped.
Args:
p (tp.Dict[str, float]): A dict mapping between attributes and dropout probability. For example:
...
"genre": 0.1,
"artist": 0.5,
"audio": 0.25,
...
active_on_eval (bool, optional): Whether the dropout is active at eval. Default to False.
seed (int, optional): Random seed.
"""
def __init__(self, p: tp.Dict[str, tp.Dict[str, float]], active_on_eval: bool = False, seed: int = 1234):
super().__init__(p=p, seed=seed)
self.active_on_eval = active_on_eval
# construct dict that return the values from p otherwise 0
self.p = {}
for condition_type, probs in p.items():
self.p[condition_type] = defaultdict(lambda: 0, probs)
def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]:
"""
Args:
samples (list[ConditioningAttributes]): List of conditions.
Returns:
list[ConditioningAttributes]: List of conditions after certain attributes were set to None.
"""
if not self.training and not self.active_on_eval:
return samples
samples = deepcopy(samples)
for condition_type, ps in self.p.items(): # for condition types [text, wav]
for condition, p in ps.items(): # for attributes of each type (e.g., [artist, genre])
if torch.rand(1, generator=self.rng).item() < p:
for sample in samples:
self.dropout_condition(sample, condition_type, condition)
return samples
|