File size: 10,249 Bytes
258fd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import re
import sys
import json 

from torch.utils.data import Dataset
import torchaudio
from torchaudio.functional import resample
import torch
import numpy as np

from torch.nn.utils.rnn import pad_sequence



def check_lryics(lyric):
    _FILTER_STRING = [
        '作词', '作曲', '编曲', '【', '策划', 
        '录音', '混音', '母带', ':', '制作', 
        '版权', '校对', '演奏', '制作', '伴奏'
    ]
    for item in _FILTER_STRING:
        if item in lyric:
            return True
    
    return False



def process_lyrics(lines):
    lyric_part = []
    timestamp_part = []
    
    timestamp_pattern = re.compile(r'\[\d+:\d+(\.\d+)?\]')

    for i, line in enumerate(lines):
        
        # 删除前几行的特定信息
        if i<10 and check_lryics(line):
            continue

        # 检查是否包含有效的时间戳和歌词内容
        if timestamp_pattern.match(line):
            timestamp_end = line.rfind(']')
            lyrics = line[timestamp_end + 1:].strip()
            timestamps = line[:timestamp_end + 1]
            
            if ':' in lyrics:
                if len(lyrics.split(":")[0]) <=5:
                     lyrics = "".join(lyrics.split(":")[1:])
            # if lyrics:  # 确保歌词部分不是空的
            #     lyric_part.append(lyrics)
            #     timestamp_part.append(timestamps)
    # print(processed_lyrics)
    return timestamp_part, lyric_part

def get_timestamps(timestamp_part):
    
    # 转换为秒

    timestamps = []
    
    for line in timestamp_part:
        match = re.match(r'\[(\d+):(\d+)(\.\d+)?\]', line)
        if match:
            minutes = int(match.group(1))
            seconds = float(match.group(2))
            millis = float(match.group(3)) if match.group(3) else 0
            total_seconds = minutes * 60 + seconds + millis
            timestamps.append(total_seconds)
        
        
    return timestamps

def process_lyrics_lrc(lyrics):
    timestamp_part, lyric_part = process_lyrics(lyrics)
    # print(timestamp_part)
    # print(lyric_part)
    timestamps = get_timestamps(timestamp_part)
    # print(timestamps)
    if len(timestamps) == 0:
        # print(f'{lyric_path}')
        return []
    
    slice_start = timestamps[0]
    slice_start_idx = 0

    output_list = []
    for i in range(1, len(timestamps)):
        # 如果累积时间超过30秒,则进行切分, 如果整体小于30s, 整句会被丢掉
        if timestamps[i] - slice_start > 30:
            output_list.append(f'[{str(slice_start)}:{str(timestamps[i])}]' + ", ".join(lyric_part[slice_start_idx:i]))
                           
            slice_start = timestamps[i]
            slice_start_idx = i
    
    return output_list



def process_lyrics_yrc(lyrics):
    
    timestamps, lyric_part = extract_lrc(lyrics)
    
    # timestamp_part, lyric_part = process_lyrics(lyrics)
    # import pdb; pdb.set_trace()
    # print(timestamp_part)
    # print(lyric_part)
    # timestamps = get_timestamps(timestamp_part)
    # print(timestamps)
    if len(timestamps) == 0:
        # print(f'{lyric_path}')
        return []
    
    slice_start = timestamps[0]
    slice_start_idx = 0

    output_list = []
    for i in range(1, len(timestamps)):
        # 如果累积时间超过30秒,则进行切分
        if timestamps[i] - slice_start > 30:
            output_list.append(f'[{str(slice_start)}:{str(timestamps[i])}]' + ", ".join(lyric_part[slice_start_idx:i]))
                           
            slice_start = timestamps[i]
            slice_start_idx = i
    # import pdb; pdb.set_trace()
    return output_list

def extract_lrc(lyrics):
    timestamp_part, lyric_part = [], []
    
    for i,  text in enumerate(lyrics):
        # 提取中括号内的内容
        bracket_content = re.search(r'\[(.*?)\]', text).group(1)
        bracket_content = bracket_content.split(',')
        # 提取小括号内的内容
        parentheses_content = re.findall(r'\((.*?)\)', text)
        # 提取其他内容
        other_content = re.sub(r'\[(.*?)\]|\((.*?)\)', '', text).strip()
        
        # 数据怎么处理?
        if i<10 and check_lryics(other_content):
            continue
        timestamp_part.append(float(bracket_content[0])/1000)
        lyric_part.append(other_content)
    return timestamp_part, lyric_part



class WYYSongDataset(Dataset):
    def __init__(self, 
                metadata_path:str, 
                sr:int = 0, 
                use_lang = ['en', 'zh-cn'],
                num_examples = -1,
                max_dur = 20,
                pad_to_max= True,
                ):
        
        self.sr = sr
        self.use_lang = use_lang
        self._load_metadata(metadata_path)
        self.max_dur = max_dur
        self.pad_to_max = pad_to_max
        
        # buffer
        self.lyric_buffer = {}

        if(num_examples<=0):
            self.dataset_len = len(self.data)
            self.random_slc = False
        else:
            self.dataset_len = num_examples
            self.random_slc = True
    
    # 读取jsonl文件    
    def _load_metadata(self, metadata_path):
        with open(metadata_path) as fp:
            lines = fp.readlines()
            self.data = []
            for line in lines: 
                item = json.loads(line)
                if '伴奏' not in item['path']:
                    # if "lang_type" in item and item['lang_type'] == 'en':
                     if "lang_type" in item:
                        self.data.append(item)
        
    
    def __len__(self):
        return self.dataset_len
    
    
    def __getitem__(self, idx):
        try_cnt = 0 
        while True:
            if(self.random_slc): 
                idx = np.random.randint(0, len(self.data))
            yrc_lyrics = []
            lrc_lyrics = []
            try:
                info = self.data[idx]
                
                # audio path
                path = info["path"]
                lang_type = info["lang_type"]
                if info["lang_type"] == 'en':
                    lyrics = info['lyrics']
                else:
                    lyrics = info['lyrics_phone']
                
                # 随机选取一个lyric段落
                ly_id = torch.randint(low=1, high=len(lyrics), size=(1,))[0].item()                
                lyric = lyrics[ly_id].strip()
                
                st, et, lyric = self.parse_lyric(lyric)
                lyric = lyric.replace("\xa0", " ")
                
                lyric = " ".join(lyric.split()) 
                
                assert et - st < self.max_dur
                
                
                if info["lang_type"] == 'en':
                    # print(len(lyric.split())/(et-st))
                    assert 6 > len(lyric.split())/(et-st) > 1
                else:
                    # print(len(lyric.split())/(et-st))
                    lyric = lyric.replace("-", "")
                    assert 6 > len(lyric.split())/(et-st) > 1
                
                
                # 读取音频文件
                cur_sample_rate = torchaudio.info(path).sample_rate
                offset = int(cur_sample_rate*st)
                num_frames = int(cur_sample_rate * (et -st))
                chunk, _ = torchaudio.load(path, frame_offset=offset, num_frames=num_frames)
                # chunk = torch.zeros(1, 48000*15)
                
                # 随机选取一个channel
                if(chunk.shape[0]>1):
                    chunk = chunk[torch.randint(chunk.shape[0], size=(1,)),:].float()
                else:
                    chunk = chunk[[0],:].float()
                
                if(cur_sample_rate!=self.sr):
                    # print('a:',cur_sample_rate,chunk.shape)
                    chunk = torchaudio.functional.resample(chunk, cur_sample_rate, self.sr)
                    
                if self.pad_to_max:
                    chunk = self.pad_2d_tensor(chunk, int(self.max_dur * self.sr), 0)
                        
                return chunk, lyric, et-st, path, lang_type
            except:
                    # print("Error loadding ", info["path"])
                    try_cnt += 1
                    idx  = np.random.randint(0, len(self.data))
                    if(try_cnt>20):
                        raise FileNotFoundError()
        
    def parse_lyric(self, lyric):
        pattern = r'\[(\d+\.\d+):(\d+\.\d+)\](.*)'
        match = re.search(pattern, lyric)

        start_time = float(match.group(1))
        end_time = float(match.group(2))
        content = match.group(3)
        return start_time, end_time, content
    
    def pad_2d_tensor(self, x, max_len, pad_id):
        # 获取输入 tensor 的形状
        batch_size, seq_len = x.size()
        max_len = max(max_len, seq_len)
        # 计算需要填充的长度
        pad_len = max_len - seq_len

        # 如果需要填充
        if pad_len > 0:
            # 创建填充 tensor
            pad_tensor = torch.full((batch_size, pad_len), pad_id, dtype=x.dtype, device=x.device)

            # 沿第二个维度(列)连接输入 tensor 和填充 tensor
            padded_tensor = torch.cat([x, pad_tensor], dim=1)
        else:
            # 如果不需要填充,直接返回输入 tensor
            padded_tensor = x

        return padded_tensor
    
def collect_data(data_list):
    audios =  pad_sequence([data[0].t() for data in data_list], batch_first=True, padding_value=0).transpose(1,2)
    lyrics = [data[1] for data in data_list]
    st_et = [data[2] for data in data_list]
    paths = [data[3] for data in data_list]
    lang_types = [data[4] for data in data_list]
    return audios, lyrics, st_et, lang_types
    # return audios, lyrics, st_et


def build_dataset():
    train_dataset = WYYSongDataset(
        metadata_path = "train.jsonl",
        sr = 48000,
        use_lang = ['zh-cn', 'en'],
        num_examples = 10*10000
    )

    valid_dataset = WYYSongDataset(
        metadata_path = "valid.jsonl",
        sr = 48000,
        use_lang = ['zh-cn', 'en'],
        num_examples = 500
    )

    return train_dataset, valid_dataset