Spaces:
Running
on
L40S
Running
on
L40S
File size: 6,987 Bytes
258fd02 d658154 258fd02 d658154 258fd02 d658154 258fd02 d658154 258fd02 d658154 258fd02 d658154 258fd02 d658154 258fd02 d658154 258fd02 d658154 258fd02 d658154 258fd02 d658154 258fd02 d658154 258fd02 d658154 258fd02 d658154 258fd02 d658154 258fd02 d658154 258fd02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import sys
import os
import time
import json
import torch
import torchaudio
import numpy as np
from omegaconf import OmegaConf
from codeclm.trainer.codec_song_pl import CodecLM_PL
from codeclm.models import CodecLM
from third_party.demucs.models.pretrained import get_model_from_yaml
auto_prompt_type = ['Pop', 'R&B', 'Dance', 'Jazz', 'Folk', 'Rock', 'Chinese Style', 'Chinese Tradition', 'Metal', 'Reggae', 'Chinese Opera', 'Auto']
class Separator:
def __init__(self, dm_model_path='third_party/demucs/ckpt/htdemucs.pth', dm_config_path='third_party/demucs/ckpt/htdemucs.yaml', gpu_id=0) -> None:
if torch.cuda.is_available() and gpu_id < torch.cuda.device_count():
self.device = torch.device(f"cuda:{gpu_id}")
else:
self.device = torch.device("cpu")
self.demucs_model = self.init_demucs_model(dm_model_path, dm_config_path)
def init_demucs_model(self, model_path, config_path):
model = get_model_from_yaml(config_path, model_path)
model.to(self.device)
model.eval()
return model
def load_audio(self, f):
a, fs = torchaudio.load(f)
if (fs != 48000):
a = torchaudio.functional.resample(a, fs, 48000)
if a.shape[-1] >= 48000*10:
a = a[..., :48000*10]
else:
a = torch.cat([a, a], -1)
return a[:, 0:48000*10]
def run(self, audio_path, output_dir='tmp', ext=".flac"):
os.makedirs(output_dir, exist_ok=True)
name, _ = os.path.splitext(os.path.split(audio_path)[-1])
output_paths = []
for stem in self.demucs_model.sources:
output_path = os.path.join(output_dir, f"{name}_{stem}{ext}")
if os.path.exists(output_path):
output_paths.append(output_path)
if len(output_paths) == 1: # 4
vocal_path = output_paths[0]
else:
drums_path, bass_path, other_path, vocal_path = self.demucs_model.separate(audio_path, output_dir, device=self.device)
for path in [drums_path, bass_path, other_path]:
os.remove(path)
full_audio = self.load_audio(audio_path)
vocal_audio = self.load_audio(vocal_path)
bgm_audio = full_audio - vocal_audio
return full_audio, vocal_audio, bgm_audio
if __name__ == "__main__":
torch.backends.cudnn.enabled = False
OmegaConf.register_new_resolver("eval", lambda x: eval(x))
OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx])
OmegaConf.register_new_resolver("get_fname", lambda: os.path.splitext(os.path.basename(sys.argv[1]))[0])
OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x)))
np.random.seed(int(time.time()))
ckpt_path = sys.argv[1]
input_jsonl = sys.argv[2]
save_dir = sys.argv[3]
cfg_path = os.path.join(ckpt_path, 'config.yaml')
ckpt_path = os.path.join(ckpt_path, 'model.pt')
cfg = OmegaConf.load(cfg_path)
cfg.mode = 'inference'
max_duration = cfg.max_dur
# Define model or load pretrained model
model_light = CodecLM_PL(cfg, ckpt_path)
model_light = model_light.eval().cuda()
model_light.audiolm.cfg = cfg
model = CodecLM(name = "tmp",
lm = model_light.audiolm,
audiotokenizer = model_light.audio_tokenizer,
max_duration = max_duration,
seperate_tokenizer = model_light.seperate_tokenizer,
)
separator = Separator()
auto_prompt = torch.load('ckpt/prompt.pt')
merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
cfg_coef = 1.5 #25
temp = 0.9
top_k = 50
top_p = 0.0
record_tokens = True
record_window = 50
model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef,
top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window)
os.makedirs(save_dir, exist_ok=True)
os.makedirs(save_dir + "/audios", exist_ok=True)
os.makedirs(save_dir + "/jsonl", exist_ok=True)
with open(input_jsonl, "r") as fp:
lines = fp.readlines()
new_items = []
for line in lines:
item = json.loads(line)
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac"
lyric = item["gt_lyric"]
descriptions = item["descriptions"] if "descriptions" in item else None
# get prompt audio
if "prompt_audio_path" in item:
assert os.path.exists(item['prompt_audio_path']), f"prompt_audio_path {item['prompt_audio_path']} not found"
assert 'auto_prompt_audio_type' not in item, f"auto_prompt_audio_type and prompt_audio_path cannot be used together"
pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path'])
melody_is_wav = True
elif "auto_prompt_audio_type" in item:
assert item["auto_prompt_audio_type"] in auto_prompt_type, f"auto_prompt_audio_type {item['auto_prompt_audio_type']} not found"
if item["auto_prompt_audio_type"] == "Auto":
prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
else:
prompt_token = auto_prompt[item["auto_prompt_audio_type"]][np.random.randint(0, len(auto_prompt[item["auto_prompt_audio_type"]]))]
pmt_wav = prompt_token[:,[0],:]
vocal_wav = prompt_token[:,[1],:]
bgm_wav = prompt_token[:,[2],:]
melody_is_wav = False
else:
pmt_wav = None
vocal_wav = None
bgm_wav = None
melody_is_wav = True
generate_inp = {
'lyrics': [lyric.replace(" ", " ")],
'descriptions': [descriptions],
'melody_wavs': pmt_wav,
'vocal_wavs': vocal_wav,
'bgm_wavs': bgm_wav,
'melody_is_wav': melody_is_wav,
}
start_time = time.time()
with torch.autocast(device_type="cuda", dtype=torch.float16):
tokens = model.generate(**generate_inp, return_tokens=True)
mid_time = time.time()
with torch.no_grad():
if melody_is_wav:
wav_seperate = model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
else:
wav_seperate = model.generate_audio(tokens)
end_time = time.time()
torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate)
print(f"process{item['idx']}, lm cost {mid_time - start_time}s, diffusion cost {end_time - mid_time}")
item["idx"] = f"{item['idx']}"
item["wav_path"] = target_wav_name
new_items.append(item)
src_jsonl_name = os.path.split(input_jsonl)[-1]
with open(f"{save_dir}/jsonl/{src_jsonl_name}.jsonl", "w", encoding='utf-8') as fw:
for item in new_items:
fw.writelines(json.dumps(item, ensure_ascii=False)+"\n")
|