Spaces:
Running
on
L40S
Running
on
L40S
File size: 5,523 Bytes
258fd02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import sys
import os
import time
import json
import torch
import torchaudio
import numpy as np
from omegaconf import OmegaConf
from codeclm.trainer.codec_song_pl import CodecLM_PL
from codeclm.models import CodecLM
from third_party.demucs.models.pretrained import get_model_from_yaml
class Separator:
def __init__(self, dm_model_path='third_party/demucs/ckpt/htdemucs.pth', dm_config_path='third_party/demucs/ckpt/htdemucs.yaml', gpu_id=0) -> None:
if torch.cuda.is_available() and gpu_id < torch.cuda.device_count():
self.device = torch.device(f"cuda:{gpu_id}")
else:
self.device = torch.device("cpu")
self.demucs_model = self.init_demucs_model(dm_model_path, dm_config_path)
def init_demucs_model(self, model_path, config_path):
model = get_model_from_yaml(config_path, model_path)
model.to(self.device)
model.eval()
return model
def load_audio(self, f):
a, fs = torchaudio.load(f)
if (fs != 48000):
a = torchaudio.functional.resample(a, fs, 48000)
if a.shape[-1] >= 48000*10:
a = a[..., :48000*10]
else:
a = torch.cat([a, a], -1)
return a[:, 0:48000*10]
def run(self, audio_path, output_dir='tmp', ext=".flac"):
os.makedirs(output_dir, exist_ok=True)
name, _ = os.path.splitext(os.path.split(audio_path)[-1])
output_paths = []
for stem in self.demucs_model.sources:
output_path = os.path.join(output_dir, f"{name}_{stem}{ext}")
if os.path.exists(output_path):
output_paths.append(output_path)
if len(output_paths) == 1: # 4
vocal_path = output_paths[0]
else:
drums_path, bass_path, other_path, vocal_path = self.demucs_model.separate(audio_path, output_dir, device=self.device)
for path in [drums_path, bass_path, other_path]:
os.remove(path)
full_audio = self.load_audio(audio_path)
vocal_audio = self.load_audio(vocal_path)
bgm_audio = full_audio - vocal_audio
return full_audio, vocal_audio, bgm_audio
def main_sep():
torch.backends.cudnn.enabled = False #taiji的某些傻呗node会报奇奇怪怪的错
OmegaConf.register_new_resolver("eval", lambda x: eval(x))
OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx])
OmegaConf.register_new_resolver("get_fname", lambda: os.path.splitext(os.path.basename(sys.argv[1]))[0])
OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x)))
cfg = OmegaConf.load(sys.argv[1])
save_dir = sys.argv[2]
input_jsonl = sys.argv[3]
sidx = sys.argv[4]
cfg.mode = 'inference'
max_duration = cfg.max_dur
# Define model or load pretrained model
model_light = CodecLM_PL(cfg)
model_light = model_light.eval().cuda()
model_light.audiolm.cfg = cfg
model = CodecLM(name = "tmp",
lm = model_light.audiolm,
audiotokenizer = model_light.audio_tokenizer,
max_duration = max_duration,
seperate_tokenizer = model_light.seperate_tokenizer,
)
separator = Separator()
cfg_coef = 1.5 #25
temp = 1.0
top_k = 50
top_p = 0.0
record_tokens = True
record_window = 50
model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef,
top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window)
os.makedirs(save_dir + "/token", exist_ok=True)
os.makedirs(save_dir + "/audios", exist_ok=True)
os.makedirs(save_dir + "/jsonl", exist_ok=True)
with open(input_jsonl, "r") as fp:
lines = fp.readlines()
new_items = []
for line in lines:
item = json.loads(line)
target_name = f"{save_dir}/token/{item['idx']}_s{sidx}.npy"
target_wav_name = f"{save_dir}/audios/{item['idx']}_s{sidx}.flac"
descriptions = item["descriptions"]
lyric = item["gt_lyric"]
start_time = time.time()
pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path'])
generate_inp = {
'lyrics': [lyric.replace(" ", " ")],
'descriptions': [descriptions],
'melody_wavs': pmt_wav,
'vocal_wavs': vocal_wav,
'bgm_wavs': bgm_wav,
}
mid_time = time.time()
with torch.autocast(device_type="cuda", dtype=torch.float16):
tokens = model.generate(**generate_inp, return_tokens=True)
end_time = time.time()
if tokens.shape[-1] > 3000:
tokens = tokens[..., :3000]
with torch.no_grad():
wav_seperate = model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate)
np.save(target_name, tokens.cpu().squeeze(0).numpy())
print(f"process{item['idx']}, demucs cost {mid_time - start_time}s, lm cos {end_time - mid_time}")
item["idx"] = f"{item['idx']}_s{sidx}"
item["tk_path"] = target_name
new_items.append(item)
src_jsonl_name = os.path.split(input_jsonl)[-1]
with open(f"{save_dir}/jsonl/{src_jsonl_name}-s{sidx}.jsonl", "w", encoding='utf-8') as fw:
for item in new_items:
fw.writelines(json.dumps(item, ensure_ascii=False)+"\n")
if __name__ == "__main__":
main_sep()
|