Spaces:
Running
on
L40S
Running
on
L40S
File size: 13,293 Bytes
258fd02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import re
import sys
import json
from typing import List, Union
from torch.utils.data import Dataset
import torchaudio
from torchaudio.functional import resample
import torch
import numpy as np
from torch.nn.utils.rnn import pad_sequence
PARAGRAPH_GAP = 6
MIN_MUSIC_LEN = 3
def check_lryics(lyric):
_FILTER_STRING = [
'作词', '作曲', '编曲', '【', '策划',
'录音', '混音', '母带', ':', '制作',
'版权', '校对', '演奏', '制作', '伴奏'
]
for item in _FILTER_STRING:
if item in lyric:
return True
return False
def process_lyrics(lines):
lyric_part = []
timestamp_part = []
timestamp_pattern = re.compile(r'\[\d+:\d+(\.\d+)?\]')
for i, line in enumerate(lines):
# 删除前几行的特定信息
if i<10 and check_lryics(line):
continue
# 检查是否包含有效的时间戳和歌词内容
if timestamp_pattern.match(line):
timestamp_end = line.rfind(']')
lyrics = line[timestamp_end + 1:].strip()
timestamps = line[:timestamp_end + 1]
if ':' in lyrics:
if len(lyrics.split(":")[0]) <=5:
lyrics = "".join(lyrics.split(":")[1:])
# if lyrics: # 确保歌词部分不是空的
# lyric_part.append(lyrics)
# timestamp_part.append(timestamps)
# print(processed_lyrics)
return timestamp_part, lyric_part
def get_timestamps(timestamp_part):
# 转换为秒
timestamps = []
for line in timestamp_part:
match = re.match(r'\[(\d+):(\d+)(\.\d+)?\]', line)
if match:
minutes = int(match.group(1))
seconds = float(match.group(2))
millis = float(match.group(3)) if match.group(3) else 0
total_seconds = minutes * 60 + seconds + millis
timestamps.append(total_seconds)
return timestamps
def process_lyrics_lrc(lyrics):
timestamp_part, lyric_part = process_lyrics(lyrics)
# print(timestamp_part)
# print(lyric_part)
timestamps = get_timestamps(timestamp_part)
# print(timestamps)
if len(timestamps) == 0:
# print(f'{lyric_path}')
return []
slice_start = timestamps[0]
slice_start_idx = 0
output_list = []
for i in range(1, len(timestamps)):
# 如果累积时间超过30秒,则进行切分, 如果整体小于30s, 整句会被丢掉
if timestamps[i] - slice_start > 30:
output_list.append(f'[{str(slice_start)}:{str(timestamps[i])}]' + ", ".join(lyric_part[slice_start_idx:i]))
slice_start = timestamps[i]
slice_start_idx = i
return output_list
def process_lyrics_yrc(lyrics):
timestamps, lyric_part = extract_lrc(lyrics)
# timestamp_part, lyric_part = process_lyrics(lyrics)
# import pdb; pdb.set_trace()
# print(timestamp_part)
# print(lyric_part)
# timestamps = get_timestamps(timestamp_part)
# print(timestamps)
if len(timestamps) == 0:
# print(f'{lyric_path}')
return []
slice_start = timestamps[0]
slice_start_idx = 0
output_list = []
for i in range(1, len(timestamps)):
# 如果累积时间超过30秒,则进行切分
if timestamps[i] - slice_start > 30:
output_list.append(f'[{str(slice_start)}:{str(timestamps[i])}]' + ", ".join(lyric_part[slice_start_idx:i]))
slice_start = timestamps[i]
slice_start_idx = i
# import pdb; pdb.set_trace()
return output_list
def extract_lrc(lyrics):
timestamp_part, lyric_part = [], []
for i, text in enumerate(lyrics):
# 提取中括号内的内容
bracket_content = re.search(r'\[(.*?)\]', text).group(1)
bracket_content = bracket_content.split(',')
# 提取小括号内的内容
parentheses_content = re.findall(r'\((.*?)\)', text)
# 提取其他内容
other_content = re.sub(r'\[(.*?)\]|\((.*?)\)', '', text).strip()
# 数据怎么处理?
if i<10 and check_lryics(other_content):
continue
timestamp_part.append(float(bracket_content[0])/1000)
lyric_part.append(other_content)
return timestamp_part, lyric_part
class WYYSongDataset(Dataset):
def __init__(self,
metadata_path: Union[str, List[str]],
sr:int = 0,
use_lang = ['en', 'zh-cn'],
num_examples = -1,
max_dur = 20,
min_dur=0,
add_music=False,
pad_to_max= True,
):
self.sr = sr
self.use_lang = use_lang
self.data = []
if type(metadata_path) == str:
metadata_path = [metadata_path]
for _meta in metadata_path:
self._load_metadata(_meta)
self.max_dur = max_dur
self.min_dur = min_dur
self.pad_to_max = pad_to_max
self.add_music = add_music
# buffer
self.lyric_buffer = {}
if(num_examples<=0):
self.dataset_len = len(self.data)
self.random_slc = False
else:
self.dataset_len = num_examples
self.random_slc = True
# 读取jsonl文件
def _load_metadata(self, metadata_path):
with open(metadata_path) as fp:
lines = fp.readlines()
for line in lines:
item = json.loads(line)
if '伴奏' not in item['path']:
# if "lang_type" in item and item['lang_type'] == 'en':
if "lang_type" in item:
self.data.append(item)
def __len__(self):
return self.dataset_len
def __getitem__(self, idx):
try_cnt = 0
while True:
if(self.random_slc):
idx = np.random.randint(0, len(self.data))
yrc_lyrics = []
lrc_lyrics = []
try:
info = self.data[idx]
# audio path
path = info["path"]
lang_type = info["lang_type"]
lyrics = info['lyrics'] # chinese
# lyrics = info['lyrics_phone']
# 随机选取一个lyric段落
parsed_lyrics = []
# st_idx = np.random.randint(0, len(lyrics))
for ly_id in range(len(lyrics)):
lyric = lyrics[ly_id].strip()
st, et, lyric = self.parse_lyric(lyric)
if et - st >= self.max_dur:
continue #TODO 前后外沿 [MUSIC]
if parsed_lyrics != []:
if st - parsed_lyrics[-1][1] >= PARAGRAPH_GAP: # 大gap
parsed_lyrics.append((parsed_lyrics[-1][1], st, '[GAP]'))
elif self.add_music and st - parsed_lyrics[-1][1] >= MIN_MUSIC_LEN:
parsed_lyrics.append((parsed_lyrics[-1][1], st, '[MUSIC]'))
lyric = lyric.replace("\xa0", " ")
lyric = " ".join(lyric.split())
parsed_lyrics.append((st, et, lyric))
assert parsed_lyrics != []
# if parsed_lyrics[-1][1] - parsed_lyrics[0][0] > self.max_dur:
# print(f"{parsed_lyrics[0][0]}-{parsed_lyrics[-1][1]} {parsed_lyrics}", file=open('tmp.txt', 'a'))
parsed_lyrics = [(0, parsed_lyrics[0][0], '[GAP]')] + parsed_lyrics
possible_starts = [e for e,i in enumerate(parsed_lyrics) if i[2]=='[GAP]']
st_idx = np.random.choice(possible_starts)
paraphrase = []
for i in parsed_lyrics[st_idx+1:]:
if i[2] == '[GAP]':
break
paraphrase.append(i)
# print(paraphrase, lyrics)
while paraphrase[-1][1] - paraphrase[0][0] > self.max_dur:
if np.random.rand() > 0.2:
paraphrase.pop(-1) # 大概率从后面截断
else:
paraphrase.pop(0) # 小概率截前面
st, et, lyric = paraphrase[0][0], paraphrase[-1][1], ', '.join([i[2] for i in paraphrase]) # [SEP]
# print(st, et, lyric)
# import pdb; pdb.set_trace()
assert self.min_dur < et - st < self.max_dur, f"{st}-{et} {lyric}"
# print(et-st, lyric)
# import pdb; pdb.set_trace()
if info["lang_type"] == 'en':
# print(len(lyric.split())/(et-st))
char_num = sum([len(lrc[-1].split()) for lrc in paraphrase])
assert 6 > char_num / (et-st) > 1
else:
# print(len(lyric.split())/(et-st))
char_num = sum([len(lrc[-1]) for lrc in paraphrase])
assert 6 > char_num / (et-st) > 1
# 读取音频文件
cur_sample_rate = torchaudio.info(path).sample_rate
offset = int(cur_sample_rate*st)
num_frames = int(cur_sample_rate * (et -st))
chunk, _ = torchaudio.load(path, frame_offset=offset, num_frames=num_frames)
# chunk = torch.zeros(1, 48000*15)
if abs(chunk.shape[-1] - num_frames) > num_frames * 0.05: # 音频文件长度与歌词不一致
print(f"fail to load {path} from {st} to {et} !")
raise FileNotFoundError
# 随机选取一个channel
if(chunk.shape[0]>1):
chunk = chunk[torch.randint(chunk.shape[0], size=(1,)),:].float()
else:
chunk = chunk[[0],:].float()
if(cur_sample_rate!=self.sr):
# print('a:',cur_sample_rate,chunk.shape)
chunk = torchaudio.functional.resample(chunk, cur_sample_rate, self.sr)
if self.pad_to_max:
chunk = self.pad_2d_tensor(chunk, int(self.max_dur * self.sr), 0)
# print(self.sz_cnt)
return chunk, lyric, [st, et], path, lang_type
except (AssertionError, FileNotFoundError, RuntimeError) as e: # 其他Error不ok
# print("Error loadding ", info["path"])
try_cnt += 1
idx = np.random.randint(0, len(self.data))
if(try_cnt>100):
raise e
def parse_lyric(self, lyric):
pattern = r'\[(\d+\.\d+):(\d+\.\d+)\](.*)'
match = re.search(pattern, lyric)
start_time = float(match.group(1))
end_time = float(match.group(2))
content = match.group(3)
return start_time, end_time, content
def pad_2d_tensor(self, x, max_len, pad_id):
# 获取输入 tensor 的形状
batch_size, seq_len = x.size()
max_len = max(max_len, seq_len)
# 计算需要填充的长度
pad_len = max_len - seq_len
# 如果需要填充
if pad_len > 0:
# 创建填充 tensor
pad_tensor = torch.full((batch_size, pad_len), pad_id, dtype=x.dtype, device=x.device)
# 沿第二个维度(列)连接输入 tensor 和填充 tensor
padded_tensor = torch.cat([x, pad_tensor], dim=1)
else:
# 如果不需要填充,直接返回输入 tensor
padded_tensor = x
return padded_tensor
def collect_data(data_list):
audios = pad_sequence([data[0].t() for data in data_list], batch_first=True, padding_value=0).transpose(1,2)
lyrics = [data[1] for data in data_list]
st_et = [data[2] for data in data_list]
paths = [data[3] for data in data_list]
lang_types = [data[4] for data in data_list]
return audios, lyrics, st_et
# return audios, lyrics, st_et
def build_dataset(train_jsonl_list, val_jsonl_list, min_dur=0, max_dur=20, add_music=False):
print(min_dur,max_dur)
print(train_jsonl_list)
# ["exp/wyy3_20240418_v2f.jsonl",
# "exp/tme_lyric_baokuan.jsonl"]
train_dataset = WYYSongDataset(
metadata_path = train_jsonl_list,
sr = 48000,
use_lang = ['zh-cn', 'en'],
num_examples = 10*10000,
min_dur=min_dur,
max_dur=max_dur,
add_music=add_music
)
valid_dataset = WYYSongDataset(
metadata_path = val_jsonl_list,
sr = 48000,
use_lang = ['zh-cn', 'en'],
num_examples = 500,
min_dur=min_dur,
max_dur=max_dur,
add_music=add_music
)
print(train_jsonl_list, "\t total_song = ", len(train_dataset.data))
return train_dataset, valid_dataset
|