Spaces:
Running
on
L40S
Running
on
L40S
File size: 30,332 Bytes
258fd02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
"""
Main model for using CodecLM. This will combine all the required components
and provide easy access to the generation API.
"""
import typing as tp
import warnings
import sys
import time
import torch
import torch.nn as nn
from torch.nn import functional as F
import torchaudio
import numpy as np
import lightning as pl
from torchmetrics.classification import MulticlassAccuracy
import pdb
from codeclm.models import builders
import math
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from peft import LoraConfig, get_peft_model
from datetime import datetime
import os
os.environ['TOKENIZERS_PARALLELISM'] = "false"
class CodecLM_PL(pl.LightningModule):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
# 1) Build audio tokenizer (usually None during training)
self.audio_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint, self.cfg)
if self.audio_tokenizer is not None:
for param in self.audio_tokenizer.parameters():
param.requires_grad = False
if "audio_tokenizer_checkpoint_sep" in self.cfg.keys():
self.seperate_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint_sep, self.cfg)
for param in self.seperate_tokenizer.parameters():
param.requires_grad = False
else:
self.seperate_tokenizer = None
# 2) Build LM
self.audiolm = builders.get_lm_model(self.cfg)
print(self.audiolm)
# 输出参数量
print('Number of parameters: ', sum(p.numel() for p in self.audiolm.parameters()))
# 3) Load pretrained checkpoint (if any)
if self.cfg.use_pretrained == 'deepspeed':
checkpoint = torch.load(self.cfg.pretrained.deepspeed_checkpoint, map_location='cpu')
missing, unexpected = self.load_state_dict(checkpoint, strict=False)
print(f'-------------Missing--------------\n{missing}')
print(f'-------------Unexpected--------------\n{unexpected}')
print("successfully load deepspeed pretrained model {}".format(self.cfg.pretrained.deepspeed_checkpoint))
self.missing = missing
else:
self.missing = []
# 如果cfg参数中有lora
if hasattr(self.cfg, 'lora'):
perf_config = LoraConfig(
r = self.cfg.lora.r,
lora_alpha = self.cfg.lora.lora_alpha,
target_modules = self.cfg.lora.target_modules,
lora_dropout = self.cfg.lora.lora_dropout,
bias = self.cfg.lora.bias,
task_type = self.cfg.lora.task_type,
)
self.audiolm = get_peft_model(self.audiolm, perf_config)
# 4) Build metrics
self.val_steps = []
self.train_slide_acc = []
self.train_steps = []
self.top1_acc_metric = nn.ModuleList([MulticlassAccuracy(
self.audiolm.code_size,
top_k=1,
average="micro", multidim_average="global",
ignore_index=self.cfg.lm.code_size, # ignore EOS token prediction
) for _ in range(self.audiolm.code_depth)])
self.top10_acc_metric = nn.ModuleList([MulticlassAccuracy(
self.audiolm.code_size,
top_k=10,
average="micro", multidim_average="global",
ignore_index=self.cfg.lm.code_size,
) for _ in range(self.audiolm.code_depth)])
self.epoch = 0
print("++++++++++++++++ training <song> +++++++++++++++++")
# TODO: move this part to loader
def generate_mask_and_end_token(self, x, sequence_lengths, end_id=16384):
batch_size = sequence_lengths.size(0)
max_length = x.size(2)
# pad one frame, if the maximum sequence length is equal to the input length
if max_length == sequence_lengths.max():
x = F.pad(x, (0, 1), value=end_id)
max_length = x.size(2)
if max_length <= sequence_lengths.max() + 1:
sequence_lengths = sequence_lengths - (sequence_lengths.max()+1 - max_length)
# Add end token to x according to the sequence length
x[torch.arange(batch_size), :, sequence_lengths] = end_id
sequence_lengths += 1
mask = torch.arange(max_length).expand(batch_size, max_length) < sequence_lengths.unsqueeze(1)
mask = mask.to(x.device)
mask_3d = mask.unsqueeze(1).expand(batch_size, x.size(1), max_length)
x = torch.where(mask_3d, x, end_id+1)
return x, mask_3d
@torch.no_grad()
def preprocess_batch(self, batch): # this function is usually called during training
# 处理 dataloader 返回的数据
audio, text_lyric, time_stamp, structure_dur, prompt_audio, structure_labels = batch
dur, valid_st, valid_et = zip(*time_stamp)
if self.audio_tokenizer is not None:
# only used in inference
self.audio_tokenizer.eval()
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=False):
audio_tokens, scale = self.audio_tokenizer.encode(audio)
audio_tokens = audio_tokens[:,:self.cfg.lm.code_depth,:]
audio_tokens = audio_tokens.long()
else:
audio_tokens = audio.long()
token_dur = (torch.Tensor(dur) * self.cfg.audio_tokenizer_frame_rate).int()
audio_tokens, audio_padding_mask = self.generate_mask_and_end_token(audio_tokens, token_dur,
end_id=self.audiolm.eos_token_id)
condition_tensors = self.audiolm.prepare_condition_tensors(batch_size=len(text_lyric),
text=text_lyric, audio_qt_emb=prompt_audio)
return condition_tensors, audio_tokens, audio_padding_mask
def get_time(self):
# 获取当前的日期和时间
now = datetime.now()
# 使用strftime函数格式化日期和时间
formatted_now = now.strftime("%Y-%m-%d %H:%M:%S.%f")
return formatted_now
def training_step(self, batch, batch_idx):
# 1) data processing
condition_tensors, audio_tokens, padding_mask = self.preprocess_batch(batch)
# 2) compute model predictions (model forward)
model_output = self.audiolm.compute_predictions(audio_tokens, condition_tensors,
training_steps=self.global_step) # this input can be ignored
logits = model_output.logits.float()
mask = padding_mask & model_output.mask
# 3) compute loss (float)
with torch.cuda.amp.autocast(enabled=False):
ce, ce_per_codebook = self._compute_cross_entropy(logits, audio_tokens, mask)
total_loss = ce
if torch.isnan(total_loss):
print(self.trainer.global_rank, ce, padding_mask, batch[1])
print('--------------------------------------------------------------')
return None
# torchaudio.save("error_rank{}.wav".format(self.trainer.global_rank), batch[0][:,0].cpu(), 24000)
# import pdb; pdb.set_trace()
# 4) compute metrics and log
metrics = {}
self.log('ce', ce, prog_bar=True)
metrics['ppl'] = torch.exp(ce)
for k, ce_q in enumerate(ce_per_codebook):
metrics[f'ce_q{k + 1}'] = ce_q
metrics[f'ppl_q{k + 1}'] = torch.exp(ce_q)
masked_labels = audio_tokens.masked_fill(~mask, value=self.cfg.lm.code_size)
metrics['acc'] = []
for k in range(self.audiolm.code_depth):
metrics['acc'].append(self.top1_acc_metric[k](logits[:, k].transpose(1,2).detach(),
masked_labels[:, k]).item())
metrics['acc'] = torch.mean(torch.Tensor(metrics['acc'])).item()
self.train_steps.append({'ce': ce.detach().cpu().item(), 'acc': metrics['acc']})
self.log('train_acc', metrics['acc']+1e-8, prog_bar=True)
self.log('lr', self.trainer.optimizers[0].param_groups[0]['lr'], prog_bar=True)
self.log_dict(metrics)
return total_loss
@torch.no_grad()
def validation_step(self, batch, batch_idx):
# 1) data processing
condition_tensors, audio_tokens, padding_mask = self.preprocess_batch(batch)
# 2) compute model predictions
model_output = self.audiolm.compute_predictions(audio_tokens, condition_tensors)
logits = model_output.logits
mask = padding_mask & model_output.mask
# 3) compute loss and metrics
ce, ce_per_codebook = self._compute_cross_entropy(logits, audio_tokens, mask)
metrics = {}
metrics['val_ce'] = ce
metrics['val_ppl'] = torch.exp(ce)
for k, ce_q in enumerate(ce_per_codebook):
metrics[f'val_ce_q{k + 1}'] = ce_q
metrics[f'val_ppl_q{k + 1}'] = torch.exp(ce_q)
masked_labels = audio_tokens.masked_fill(~mask, value=self.cfg.lm.code_size)
for k in range(self.audiolm.code_depth):
self.top1_acc_metric[k].update(logits[:, k].transpose(1,2).detach(), masked_labels[:,k]) #* total_length
self.top10_acc_metric[k].update(logits[:, k].transpose(1,2).detach(), masked_labels[:,k])
self.val_steps.append(metrics)
metrics['acc'] = []
metrics['acc_top10'] = []
for k in range(self.audiolm.code_depth):
metrics['acc'].append(self.top1_acc_metric[k](logits[:, k].transpose(1,2).detach(), masked_labels[:,k]).item())
metrics['acc_top10'].append(self.top10_acc_metric[k](logits[:, k].transpose(1,2).detach(), masked_labels[:,k]).item())
metrics['acc'] = torch.mean(torch.Tensor(metrics['acc']))
metrics['acc_top10'] = torch.mean(torch.Tensor(metrics['acc_top10']))
return metrics['acc']
def on_validation_epoch_end(self) -> None:
final_metrics = {}
for i in self.val_steps:
for k in i:
final_metrics[k] = final_metrics.get(k, []) + [i[k]]
final_metrics = {k: sum(v) / len(v) for k,v in list(final_metrics.items())}
self.log_dict(final_metrics)
q_acc = []
q_acc10 = []
for i in range(self.audiolm.code_depth):
q_acc.append(self.top1_acc_metric[i].compute())
q_acc10.append(self.top10_acc_metric[i].compute())
self.log(f"val_Top1Acc_{i}", q_acc[-1])
self.log(f"val_Top10Acc_{i}", q_acc10[-1])
self.top1_acc_metric[i].reset()
self.top10_acc_metric[i].reset()
self.log('val_Top1Acc', sum(q_acc) / self.audiolm.code_depth)
self.log('val_Top10Acc', sum(q_acc10) / self.audiolm.code_depth)
return super().on_validation_epoch_end()
def on_validation_epoch_start(self) -> None:
self.val_steps = []
for i in range(self.audiolm.code_depth):
self.top1_acc_metric[i].reset()
self.top10_acc_metric[i].reset()
if len(self.train_steps) > 0:
train_metrics = {}
for i in self.train_steps:
for k in i:
train_metrics[k] = train_metrics.get(k, []) + [i[k]]
train_metrics = {k: sum(v) / len(v) for k,v in list(train_metrics.items())}
self.log('train_summary_Top1Acc', train_metrics['acc'])
self.log('train_summary_ce', train_metrics['ce'])
self.train_steps = []
return super().on_validation_epoch_start()
# 定义优化器
def configure_optimizers(self):
total_updates = self.cfg.optim.epochs * self.cfg.optim.updates_per_epoch
optim_dict = {}
param_groups = []
missing_params = []
other_params = []
cnt = 0
# 去掉开头的‘audiolm.'
print('before missing len', len(self.missing))
self.missing = [name.replace('audiolm.', '') for name in self.missing]
print('after missing len', len(self.missing))
for name, param in self.audiolm.named_parameters():
if name in self.missing:
cnt += 1
print(name)
missing_params.append(param)
else:
other_params.append(param)
print(cnt)
assert cnt == len(self.missing)
param_groups.append({'params': other_params, 'lr': self.cfg.optim.old_lr})
param_groups.append({
'params': missing_params,
'lr': self.cfg.optim.new_lr # 为missing参数设置10倍的学习率,你可以调整这个倍数
})
if self.cfg.optim.optimizer == "adamw":
optim_dict['optimizer'] = torch.optim.AdamW(
param_groups, # 使用参数分组替代原来的 self.audiolm.parameters()
betas=tuple(self.cfg.optim.adam.betas),
weight_decay=self.cfg.optim.adam.weight_decay,
eps=self.cfg.optim.adam.eps,
)
else:
raise NotImplementedError
if self.cfg.schedule is None:
pass
elif self.cfg.schedule.lr_scheduler == "cosine":
scheduler = CosineLRScheduler(optim_dict['optimizer'],
total_steps=total_updates,
warmup_steps=self.cfg.schedule.cosine.warmup,
lr_min_ratio=self.cfg.schedule.cosine.lr_min_ratio,
cycle_length=self.cfg.schedule.cosine.cycle_length,
)
optim_dict['lr_scheduler'] = {"scheduler": scheduler, "interval": "step"}
else:
raise NotImplementedError
return optim_dict
def _compute_cross_entropy(
self, logits: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor
) -> tp.Tuple[torch.Tensor, tp.List[torch.Tensor]]:
"""Compute cross entropy between multi-codebook targets and model's logits.
The cross entropy is computed per codebook to provide codebook-level cross entropy.
Valid timesteps for each of the codebook are pulled from the mask, where invalid
timesteps are set to 0.
Args:
logits (torch.Tensor): Model's logits of shape [B, K, T, card].
targets (torch.Tensor): Target codes, of shape [B, K, T].
mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T].
Returns:
ce (torch.Tensor): Cross entropy averaged over the codebooks
ce_per_codebook (list of torch.Tensor): Cross entropy per codebook (detached).
"""
# import pdb; pdb.set_trace()
B, K, T = targets.shape
assert logits.shape[:-1] == targets.shape
assert mask.shape == targets.shape
ce = torch.zeros([], device=targets.device)
ce_per_codebook: tp.List[torch.Tensor] = []
for k in range(K):
logits_k = logits[:, k, ...].contiguous().view(-1, logits.size(-1)) # [B x T, card]
targets_k = targets[:, k, ...].contiguous().view(-1) # [B x T]
mask_k = mask[:, k, ...].contiguous().view(-1) # [B x T]
ce_targets = targets_k[mask_k]
ce_logits = logits_k[mask_k]
q_ce = F.cross_entropy(ce_logits, ce_targets)
ce += q_ce
ce_per_codebook.append(q_ce.detach())
# average cross entropy across codebooks
ce = ce / K
return ce, ce_per_codebook
class CodecLM_PL_FT(pl.LightningModule):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
# 1) Build audio tokenizer (usually None during training)
self.audio_tokenizer = builders.get_audio_tokenizer_model(self.cfg)
if self.audio_tokenizer is not None:
for param in self.audio_tokenizer.parameters():
param.requires_grad = False
# 2) Build LM
self.audiolm = builders.get_lm_model(self.cfg)
# 3) Load pretrained checkpoint (if any)
if self.cfg.use_pretrained == 'deepspeed':
checkpoint = torch.load(self.cfg.pretrained.deepspeed_checkpoint, map_location='cpu')
missing, unexpected = self.load_state_dict(checkpoint, strict=False)
print(f'-------------Missing--------------\n{missing}')
print(f'-------------Unexpected--------------\n{unexpected}')
print("successfully load deepspeed pretrained model {}".format(self.cfg.pretrained.deepspeed_checkpoint))
# 4) Build metrics
self.val_steps = []
self.train_slide_acc = []
self.train_steps = []
self.top1_acc_metric = nn.ModuleList([MulticlassAccuracy(
self.audiolm.code_size,
top_k=1,
average="micro", multidim_average="global",
ignore_index=self.cfg.lm.code_size, # ignore EOS token prediction
) for _ in range(self.audiolm.code_depth)])
self.top10_acc_metric = nn.ModuleList([MulticlassAccuracy(
self.audiolm.code_size,
top_k=10,
average="micro", multidim_average="global",
ignore_index=self.cfg.lm.code_size,
) for _ in range(self.audiolm.code_depth)])
self.epoch = 0
print("++++++++++++++++ training <song> +++++++++++++++++")
# TODO: move this part to loader
def generate_mask_and_end_token(self, x, sequence_lengths, end_id=16384):
batch_size = sequence_lengths.size(0)
max_length = x.size(2)
# pad one frame, if the maximum sequence length is equal to the input length
if max_length == sequence_lengths.max():
x = F.pad(x, (0, 1), value=end_id)
max_length = x.size(2)
if max_length <= sequence_lengths.max() + 1:
sequence_lengths = sequence_lengths - (sequence_lengths.max()+1 - max_length)
# Add end token to x according to the sequence length
x[torch.arange(batch_size), :, sequence_lengths] = end_id
sequence_lengths += 1
mask = torch.arange(max_length).expand(batch_size, max_length) < sequence_lengths.unsqueeze(1)
mask = mask.to(x.device)
mask_3d = mask.unsqueeze(1).expand(batch_size, x.size(1), max_length)
x = torch.where(mask_3d, x, end_id+1)
return x, mask_3d
@torch.no_grad()
def preprocess_batch(self, batch): # this function is usually called during training
# 处理 dataloader 返回的数据
audio, text_lyric, time_stamp, lang_type, prompt_audio = batch
dur, valid_st, valid_et = zip(*time_stamp)
if self.audio_tokenizer is not None:
# only used in inference
self.audio_tokenizer.eval()
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=False):
audio_tokens, scale = self.audio_tokenizer.encode(audio)
audio_tokens = audio_tokens[:,:self.cfg.lm.code_depth,:]
audio_tokens = audio_tokens.long()
else:
audio_tokens = audio.long()
token_dur = (torch.Tensor(dur) * self.cfg.audio_tokenizer_frame_rate).int()
audio_tokens, audio_padding_mask = self.generate_mask_and_end_token(audio_tokens, token_dur,
end_id=self.audiolm.eos_token_id)
condition_tensors = self.audiolm.prepare_condition_tensors(batch_size=len(text_lyric),
text=text_lyric, audio_qt_emb=prompt_audio)
return condition_tensors, audio_tokens, audio_padding_mask
def get_time(self):
# 获取当前的日期和时间
now = datetime.now()
# 使用strftime函数格式化日期和时间
formatted_now = now.strftime("%Y-%m-%d %H:%M:%S.%f")
return formatted_now
def training_step(self, batch, batch_idx):
# 1) data processing
condition_tensors, audio_tokens, padding_mask = self.preprocess_batch(batch)
# 2) compute model predictions (model forward)
model_output = self.audiolm.compute_predictions(audio_tokens, condition_tensors,
training_steps=self.global_step) # this input can be ignored
logits = model_output.logits.float()
mask = padding_mask & model_output.mask
# 3) compute loss (float)
with torch.cuda.amp.autocast(enabled=False):
ce, ce_per_codebook = self._compute_cross_entropy(logits, audio_tokens, mask)
total_loss = ce
if torch.isnan(total_loss):
print(self.trainer.global_rank, ce, padding_mask, batch[1])
# print('------------------------------------------------------------------------')
torchaudio.save("error_rank{}.wav".format(self.trainer.global_rank), batch[0][:,0].cpu(), 24000)
import pdb; pdb.set_trace()
return None
# 4) compute metrics and log
metrics = {}
self.log('ce', ce, prog_bar=True)
metrics['ppl'] = torch.exp(ce)
for k, ce_q in enumerate(ce_per_codebook):
metrics[f'ce_q{k + 1}'] = ce_q
metrics[f'ppl_q{k + 1}'] = torch.exp(ce_q)
masked_labels = audio_tokens.masked_fill(~mask, value=self.cfg.lm.code_size)
metrics['acc'] = []
for k in range(self.audiolm.code_depth):
metrics['acc'].append(self.top1_acc_metric[k](logits[:, k].transpose(1,2).detach(),
masked_labels[:, k]).item())
metrics['acc'] = torch.mean(torch.Tensor(metrics['acc'])).item()
self.train_steps.append({'ce': ce.detach().cpu().item(), 'acc': metrics['acc']})
self.log('train_acc', metrics['acc']+1e-8, prog_bar=True)
self.log('lr', self.trainer.optimizers[0].param_groups[0]['lr'], prog_bar=True)
self.log_dict(metrics)
return total_loss
@torch.no_grad()
def validation_step(self, batch, batch_idx):
# 1) data processing
condition_tensors, audio_tokens, padding_mask = self.preprocess_batch(batch)
# 2) compute model predictions
model_output = self.audiolm.compute_predictions(audio_tokens, condition_tensors)
logits = model_output.logits
mask = padding_mask & model_output.mask
# 3) compute loss and metrics
ce, ce_per_codebook = self._compute_cross_entropy(logits, audio_tokens, mask)
metrics = {}
metrics['val_ce'] = ce
metrics['val_ppl'] = torch.exp(ce)
for k, ce_q in enumerate(ce_per_codebook):
metrics[f'val_ce_q{k + 1}'] = ce_q
metrics[f'val_ppl_q{k + 1}'] = torch.exp(ce_q)
masked_labels = audio_tokens.masked_fill(~mask, value=self.cfg.lm.code_size)
for k in range(self.audiolm.code_depth):
self.top1_acc_metric[k].update(logits[:, k].transpose(1,2).detach(), masked_labels[:,k]) #* total_length
self.top10_acc_metric[k].update(logits[:, k].transpose(1,2).detach(), masked_labels[:,k])
self.val_steps.append(metrics)
metrics['acc'] = []
metrics['acc_top10'] = []
for k in range(self.audiolm.code_depth):
metrics['acc'].append(self.top1_acc_metric[k](logits[:, k].transpose(1,2).detach(), masked_labels[:,k]).item())
metrics['acc_top10'].append(self.top10_acc_metric[k](logits[:, k].transpose(1,2).detach(), masked_labels[:,k]).item())
metrics['acc'] = torch.mean(torch.Tensor(metrics['acc']))
metrics['acc_top10'] = torch.mean(torch.Tensor(metrics['acc_top10']))
return metrics['acc']
def on_validation_epoch_end(self) -> None:
final_metrics = {}
for i in self.val_steps:
for k in i:
final_metrics[k] = final_metrics.get(k, []) + [i[k]]
final_metrics = {k: sum(v) / len(v) for k,v in list(final_metrics.items())}
self.log_dict(final_metrics)
q_acc = []
q_acc10 = []
for i in range(self.audiolm.code_depth):
q_acc.append(self.top1_acc_metric[i].compute())
q_acc10.append(self.top10_acc_metric[i].compute())
self.log(f"val_Top1Acc_{i}", q_acc[-1])
self.log(f"val_Top10Acc_{i}", q_acc10[-1])
self.top1_acc_metric[i].reset()
self.top10_acc_metric[i].reset()
self.log('val_Top1Acc', sum(q_acc) / self.audiolm.code_depth)
self.log('val_Top10Acc', sum(q_acc10) / self.audiolm.code_depth)
return super().on_validation_epoch_end()
def on_validation_epoch_start(self) -> None:
self.val_steps = []
for i in range(self.audiolm.code_depth):
self.top1_acc_metric[i].reset()
self.top10_acc_metric[i].reset()
if len(self.train_steps) > 0:
train_metrics = {}
for i in self.train_steps:
for k in i:
train_metrics[k] = train_metrics.get(k, []) + [i[k]]
train_metrics = {k: sum(v) / len(v) for k,v in list(train_metrics.items())}
self.log('train_summary_Top1Acc', train_metrics['acc'])
self.log('train_summary_ce', train_metrics['ce'])
self.train_steps = []
return super().on_validation_epoch_start()
# 定义优化器
def configure_optimizers(self):
total_updates = self.cfg.optim.epochs * self.cfg.optim.updates_per_epoch
optim_dict = {}
if self.cfg.optim.optimizer == "adamw":
optim_dict['optimizer'] = torch.optim.AdamW(
self.audiolm.parameters(),
lr=self.cfg.optim.lr,
betas=tuple(self.cfg.optim.adam.betas),
weight_decay=self.cfg.optim.adam.weight_decay,
eps=self.cfg.optim.adam.eps,
)
else:
raise NotImplementedError
if self.cfg.schedule is None:
pass
elif self.cfg.schedule.lr_scheduler == "cosine":
scheduler = CosineLRScheduler(optim_dict['optimizer'],
total_steps=total_updates,
warmup_steps=self.cfg.schedule.cosine.warmup,
lr_min_ratio=self.cfg.schedule.cosine.lr_min_ratio,
cycle_length=self.cfg.schedule.cosine.cycle_length,
)
optim_dict['lr_scheduler'] = {"scheduler": scheduler, "interval": "step"}
else:
raise NotImplementedError
return optim_dict
def _compute_cross_entropy(
self, logits: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor
) -> tp.Tuple[torch.Tensor, tp.List[torch.Tensor]]:
"""Compute cross entropy between multi-codebook targets and model's logits.
The cross entropy is computed per codebook to provide codebook-level cross entropy.
Valid timesteps for each of the codebook are pulled from the mask, where invalid
timesteps are set to 0.
Args:
logits (torch.Tensor): Model's logits of shape [B, K, T, card].
targets (torch.Tensor): Target codes, of shape [B, K, T].
mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T].
Returns:
ce (torch.Tensor): Cross entropy averaged over the codebooks
ce_per_codebook (list of torch.Tensor): Cross entropy per codebook (detached).
"""
# import pdb; pdb.set_trace()
B, K, T = targets.shape
assert logits.shape[:-1] == targets.shape
assert mask.shape == targets.shape
ce = torch.zeros([], device=targets.device)
ce_per_codebook: tp.List[torch.Tensor] = []
for k in range(K):
logits_k = logits[:, k, ...].contiguous().view(-1, logits.size(-1)) # [B x T, card]
targets_k = targets[:, k, ...].contiguous().view(-1) # [B x T]
mask_k = mask[:, k, ...].contiguous().view(-1) # [B x T]
ce_targets = targets_k[mask_k]
ce_logits = logits_k[mask_k]
q_ce = F.cross_entropy(ce_logits, ce_targets)
ce += q_ce
ce_per_codebook.append(q_ce.detach())
# average cross entropy across codebooks
ce = ce / K
return ce, ce_per_codebook
class CosineLRScheduler(_LRScheduler):#
"""Cosine LR scheduler.
Args:
optimizer (Optimizer): Torch optimizer.
warmup_steps (int): Number of warmup steps.
total_steps (int): Total number of steps.
lr_min_ratio (float): Minimum learning rate.
cycle_length (float): Cycle length.
"""
def __init__(self, optimizer: Optimizer, total_steps: int, warmup_steps: int,
lr_min_ratio: float = 0.0, cycle_length: float = 1.0):
self.warmup_steps = warmup_steps
assert self.warmup_steps >= 0
self.total_steps = total_steps
assert self.total_steps >= 0
self.lr_min_ratio = lr_min_ratio
self.cycle_length = cycle_length
super().__init__(optimizer)
def _get_sched_lr(self, lr: float, step: int):
if step < self.warmup_steps:
lr_ratio = step / self.warmup_steps
lr = lr_ratio * lr
elif step <= self.total_steps:
s = (step - self.warmup_steps) / (self.total_steps - self.warmup_steps)
lr_ratio = self.lr_min_ratio + 0.5 * (1 - self.lr_min_ratio) * \
(1. + math.cos(math.pi * s / self.cycle_length))
lr = lr_ratio * lr
else:
lr_ratio = self.lr_min_ratio
lr = lr_ratio * lr
return lr
def get_lr(self):
return [self._get_sched_lr(lr, self.last_epoch) for lr in self.base_lrs]
|