Spaces:
Running
on
L40S
Running
on
L40S
File size: 34,776 Bytes
258fd02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
import yaml
import random
import inspect
import numpy as np
from tqdm import tqdm
import typing as tp
from abc import ABC
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from tools.torch_tools import wav_to_fbank
from diffusers.utils.torch_utils import randn_tensor
from transformers import HubertModel
from libs.rvq.descript_quantize3 import ResidualVectorQuantize
from models_gpt.models.gpt2_rope2_time_new_correct_mask_noncasual_reflow import GPT2Model
from models_gpt.models.gpt2_config import GPT2Config
from torch.cuda.amp import autocast
from our_MERT_BESTRQ.test import load_model
class HubertModelWithFinalProj(HubertModel):
def __init__(self, config):
super().__init__(config)
# The final projection layer is only used for backward compatibility.
# Following https://github.com/auspicious3000/contentvec/issues/6
# Remove this layer is necessary to achieve the desired outcome.
print("hidden_size:",config.hidden_size)
print("classifier_proj_size:",config.classifier_proj_size)
self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)
class SampleProcessor(torch.nn.Module):
def project_sample(self, x: torch.Tensor):
"""Project the original sample to the 'space' where the diffusion will happen."""
"""Project back from diffusion space to the actual sample space."""
return z
class Feature1DProcessor(SampleProcessor):
def __init__(self, dim: int = 100, power_std = 1., \
num_samples: int = 100_000, cal_num_frames: int = 600):
super().__init__()
self.num_samples = num_samples
self.dim = dim
self.power_std = power_std
self.cal_num_frames = cal_num_frames
self.register_buffer('counts', torch.zeros(1))
self.register_buffer('sum_x', torch.zeros(dim))
self.register_buffer('sum_x2', torch.zeros(dim))
self.register_buffer('sum_target_x2', torch.zeros(dim))
self.counts: torch.Tensor
self.sum_x: torch.Tensor
self.sum_x2: torch.Tensor
@property
def mean(self):
mean = self.sum_x / self.counts
if(self.counts < 10):
mean = torch.zeros_like(mean)
return mean
@property
def std(self):
std = (self.sum_x2 / self.counts - self.mean**2).clamp(min=0).sqrt()
if(self.counts < 10):
std = torch.ones_like(std)
return std
@property
def target_std(self):
return 1
def project_sample(self, x: torch.Tensor):
assert x.dim() == 3
if self.counts.item() < self.num_samples:
self.counts += len(x)
self.sum_x += x[:,:,0:self.cal_num_frames].mean(dim=(2,)).sum(dim=0)
self.sum_x2 += x[:,:,0:self.cal_num_frames].pow(2).mean(dim=(2,)).sum(dim=0)
rescale = (self.target_std / self.std.clamp(min=1e-12)) ** self.power_std # same output size
x = (x - self.mean.view(1, -1, 1)) * rescale.view(1, -1, 1)
return x
def return_sample(self, x: torch.Tensor):
assert x.dim() == 3
rescale = (self.std / self.target_std) ** self.power_std
# print(rescale, self.mean)
x = x * rescale.view(1, -1, 1) + self.mean.view(1, -1, 1)
return x
def pad_or_tunc_tolen(prior_text_encoder_hidden_states, prior_text_mask, prior_prompt_embeds, len_size=77):
if(prior_text_encoder_hidden_states.shape[1]<len_size):
prior_text_encoder_hidden_states = torch.cat([prior_text_encoder_hidden_states, \
torch.zeros(prior_text_mask.shape[0], len_size-prior_text_mask.shape[1], \
prior_text_encoder_hidden_states.shape[2], device=prior_text_mask.device, \
dtype=prior_text_encoder_hidden_states.dtype)],1)
prior_text_mask = torch.cat([prior_text_mask, torch.zeros(prior_text_mask.shape[0], len_size-prior_text_mask.shape[1], device=prior_text_mask.device, dtype=prior_text_mask.dtype)],1)
else:
prior_text_encoder_hidden_states = prior_text_encoder_hidden_states[:,0:len_size]
prior_text_mask = prior_text_mask[:,0:len_size]
prior_text_encoder_hidden_states = prior_text_encoder_hidden_states.permute(0,2,1).contiguous()
return prior_text_encoder_hidden_states, prior_text_mask, prior_prompt_embeds
class BASECFM(torch.nn.Module, ABC):
def __init__(
self,
estimator,
mlp,
ssl_layer
):
super().__init__()
self.sigma_min = 1e-4
self.estimator = estimator
self.mlp = mlp
self.ssl_layer = ssl_layer
@torch.inference_mode()
def forward(self, mu, n_timesteps, temperature=1.0):
"""Forward diffusion
Args:
mu (torch.Tensor): output of encoder
shape: (batch_size, n_channels, mel_timesteps, n_feats)
n_timesteps (int): number of diffusion steps
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
Returns:
sample: generated mel-spectrogram
shape: (batch_size, n_channels, mel_timesteps, n_feats)
"""
z = torch.randn_like(mu) * temperature
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
return self.solve_euler(z, t_span=t_span)
def solve_euler(self, x, latent_mask_input,incontext_x, incontext_length, t_span, mu,attention_mask, guidance_scale):
"""
Fixed euler solver for ODEs.
Args:
x (torch.Tensor): random noise
t_span (torch.Tensor): n_timesteps interpolated
shape: (n_timesteps + 1,)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_channels, mel_timesteps, n_feats)
"""
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
noise = x.clone()
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
# Or in future might add like a return_all_steps flag
sol = []
for step in tqdm(range(1, len(t_span))):
# print("incontext_x.shape:",incontext_x.shape)
# print("noise.shape:",noise.shape)
# print("t.shape:",t.shape)
x[:,0:incontext_length,:] = (1 - (1 - self.sigma_min) * t) * noise[:,0:incontext_length,:] + t * incontext_x[:,0:incontext_length,:]
if(guidance_scale > 1.0):
model_input = torch.cat([ \
torch.cat([latent_mask_input, latent_mask_input], 0), \
torch.cat([incontext_x, incontext_x], 0), \
torch.cat([torch.zeros_like(mu), mu], 0), \
torch.cat([x, x], 0), \
], 2)
timestep=t.unsqueeze(-1).repeat(2)
dphi_dt = self.estimator(inputs_embeds=model_input, attention_mask=attention_mask,time_step=timestep).last_hidden_state
dphi_dt_uncond, dhpi_dt_cond = dphi_dt.chunk(2,0)
dphi_dt = dphi_dt_uncond + guidance_scale * (dhpi_dt_cond - dphi_dt_uncond)
else:
model_input = torch.cat([latent_mask_input, incontext_x, mu, x], 2)
timestep=t.unsqueeze(-1)
dphi_dt = self.estimator(inputs_embeds=model_input, attention_mask=attention_mask,time_step=timestep).last_hidden_state
dphi_dt = dphi_dt[: ,:, -x.shape[2]:]
# print("dphi_dt.shape:",dphi_dt.shape)
# print("x.shape:",x.shape)
x = x + dt * dphi_dt
t = t + dt
sol.append(x)
if step < len(t_span) - 1:
dt = t_span[step + 1] - t
return sol[-1]
def projection_loss(self,hidden_proj, bestrq_emb):
bsz = hidden_proj.shape[0]
hidden_proj_normalized = F.normalize(hidden_proj, dim=-1)
bestrq_emb_normalized = F.normalize(bestrq_emb, dim=-1)
proj_loss = -(hidden_proj_normalized * bestrq_emb_normalized).sum(dim=-1)
proj_loss = 1+proj_loss.mean()
return proj_loss
def compute_loss(self, x1, mu, latent_masks,attention_mask,wav2vec_embeds, validation_mode=False):
"""Computes diffusion loss
Args:
x1 (torch.Tensor): Target
shape: (batch_size, n_channels, mel_timesteps, n_feats)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_channels, mel_timesteps, n_feats)
Returns:
loss: conditional flow matching loss
y: conditional flow
shape: (batch_size, n_channels, mel_timesteps, n_feats)
"""
b = mu[0].shape[0]
len_x = x1.shape[2]
# random timestep
if(validation_mode):
t = torch.ones([b, 1, 1], device=mu[0].device, dtype=mu[0].dtype) * 0.5
else:
t = torch.rand([b, 1, 1], device=mu[0].device, dtype=mu[0].dtype)
# sample noise p(x_0)
z = torch.randn_like(x1)
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
u = x1 - (1 - self.sigma_min) * z
# print("y.shape:",y.shape)
#self.unet(inputs_embeds=model_input, attention_mask=attention_mask,encoder_hidden_states=text_embedding,encoder_attention_mask=txt_attn_mask,time_step=timesteps).last_hidden_state
model_input = torch.cat([*mu,y], 2)
t=t.squeeze(-1).squeeze(-1)
# print("model_input.shape:",model_input.shape)
# print("attention_mask.shape:",attention_mask.shape)
out = self.estimator(inputs_embeds=model_input, attention_mask=attention_mask,time_step=t,output_hidden_states=True)
hidden_layer = out.hidden_states[self.ssl_layer]
hidden_proj = self.mlp(hidden_layer)
# print("hidden_proj.shape:",hidden_proj.shape)
# print("mert_emb.shape:",mert_emb.shape)
# exit()
out = out.last_hidden_state
out=out[:,:,-len_x:]
# out=self.proj_out(out)
weight = (latent_masks > 1.5).unsqueeze(-1).repeat(1, 1, out.shape[-1]).float() + (latent_masks < 0.5).unsqueeze(-1).repeat(1, 1, out.shape[-1]).float() * 0.01
# print("out.shape",out.shape)
# print("u.shape",u.shape)
loss_re = F.mse_loss(out * weight, u * weight, reduction="sum") / weight.sum()
# print("hidden_proj.shape:",hidden_proj.shape)
# print("wav2vec_embeds.shape:",wav2vec_embeds.shape)
loss_cos = self.projection_loss(hidden_proj, wav2vec_embeds)
loss = loss_re + loss_cos * 0.5
# print("loss_cos:",loss_cos,loss_cos.device)
print("loss:",loss,loss.device)
# exit()
return loss, loss_re, loss_cos
class PromptCondAudioDiffusion(nn.Module):
def __init__(
self,
num_channels,
unet_model_name=None,
unet_model_config_path=None,
snr_gamma=None,
hubert_layer=None,
ssl_layer=None,
uncondition=True,
out_paint=False,
):
super().__init__()
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"
self.unet_model_name = unet_model_name
self.unet_model_config_path = unet_model_config_path
self.snr_gamma = snr_gamma
self.uncondition = uncondition
self.num_channels = num_channels
self.hubert_layer = hubert_layer
self.ssl_layer = ssl_layer
# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview
self.normfeat = Feature1DProcessor(dim=64)
self.sample_rate = 48000
self.num_samples_perseg = self.sample_rate * 20 // 1000
self.rsp48toclap = torchaudio.transforms.Resample(48000, 24000)
self.rsq48towav2vec = torchaudio.transforms.Resample(48000, 16000)
# self.wav2vec = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0", trust_remote_code=True)
# self.wav2vec_processor = AutoFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0", trust_remote_code=True)
self.bestrq = load_model(
model_dir='codeclm/tokenizer/Flow1dVAE/our_MERT_BESTRQ/mert_fairseq',
checkpoint_dir='ckpt/encode-s12k.pt',
)
self.rsq48tobestrq = torchaudio.transforms.Resample(48000, 24000)
self.rsq48tohubert = torchaudio.transforms.Resample(48000, 16000)
for v in self.bestrq.parameters():v.requires_grad = False
self.rvq_bestrq_emb = ResidualVectorQuantize(input_dim = 1024, n_codebooks = 1, codebook_size = 16_384, codebook_dim = 32, quantizer_dropout = 0.0, stale_tolerance=200)
for v in self.rvq_bestrq_emb.parameters():v.requires_grad = False
self.hubert = HubertModelWithFinalProj.from_pretrained("ckpt/models--lengyue233--content-vec-best/snapshots/c0b9ba13db21beaa4053faae94c102ebe326fd68")
for v in self.hubert.parameters():v.requires_grad = False
self.zero_cond_embedding1 = nn.Parameter(torch.randn(32*32,))
# self.xvecmodel = XVECModel()
config = GPT2Config(n_positions=1000,n_layer=39,n_head=30,n_embd=1200)
unet = GPT2Model(config)
mlp = nn.Sequential(
nn.Linear(1200, 1024),
nn.SiLU(),
nn.Linear(1024, 1024),
nn.SiLU(),
nn.Linear(1024, 768)
)
self.set_from = "random"
self.cfm_wrapper = BASECFM(unet, mlp,self.ssl_layer)
self.mask_emb = torch.nn.Embedding(3, 48)
print("Transformer initialized from pretrain.")
torch.cuda.empty_cache()
# self.unet.set_attn_processor(AttnProcessor2_0())
# self.unet.set_use_memory_efficient_attention_xformers(True)
# self.start_embedding = nn.Parameter(torch.randn(1,1024))
# self.end_embedding = nn.Parameter(torch.randn(1,1024))
def compute_snr(self, timesteps):
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = self.noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma) ** 2
return snr
def preprocess_audio(self, input_audios, threshold=0.9):
assert len(input_audios.shape) == 2, input_audios.shape
norm_value = torch.ones_like(input_audios[:,0])
max_volume = input_audios.abs().max(dim=-1)[0]
norm_value[max_volume>threshold] = max_volume[max_volume>threshold] / threshold
return input_audios/norm_value.unsqueeze(-1)
def extract_wav2vec_embeds(self, input_audios,output_len):
wav2vec_stride = 2
wav2vec_embeds = self.hubert(self.rsq48tohubert(input_audios), output_hidden_states=True).hidden_states # 1, 4096, 1024
# print(wav2vec_embeds)
# print("audio.shape:",input_audios.shape)
wav2vec_embeds_last=wav2vec_embeds[self.hubert_layer]
# print("wav2vec_embeds_last.shape:",wav2vec_embeds_last.shape)
wav2vec_embeds_last=torch.nn.functional.interpolate(wav2vec_embeds_last.permute(0, 2, 1), size=output_len, mode='linear', align_corners=False).permute(0, 2, 1)
return wav2vec_embeds_last
def extract_mert_embeds(self, input_audios):
prompt_stride = 3
inputs = self.clap_embd_extractor.mulan.audio.processor(self.rsp48toclap(input_audios), sampling_rate=self.clap_embd_extractor.mulan.audio.sr, return_tensors="pt")
input_values = inputs['input_values'].squeeze(0).to(input_audios.device, dtype = input_audios.dtype)
prompt_embeds = self.clap_embd_extractor.mulan.audio.model(input_values, output_hidden_states=True).hidden_states # batch_size, Time steps, 1024
mert_emb= prompt_embeds[-1]
mert_emb = torch.nn.functional.interpolate(mert_emb.permute(0, 2, 1), size=500, mode='linear', align_corners=False).permute(0, 2, 1)
return mert_emb
def extract_bestrq_embeds(self, input_audio_0,input_audio_1,layer):
self.bestrq.eval()
# print("audio shape:",input_audio_0.shape)
input_wav_mean = (input_audio_0 + input_audio_1) / 2.0
# print("input_wav_mean.shape:",input_wav_mean.shape)
# input_wav_mean = torch.randn(2,1720320*2).to(input_audio_0.device)
input_wav_mean = self.bestrq(self.rsq48tobestrq(input_wav_mean), features_only = True)
layer_results = input_wav_mean['layer_results']
# print("layer_results.shape:",layer_results[layer].shape)
bestrq_emb = layer_results[layer]
bestrq_emb = bestrq_emb.permute(0,2,1).contiguous()
#[b,t,1024] t=t/960
#35.84s->batch,896,1024
return bestrq_emb
def extract_spk_embeds(self, input_audios):
spk_embeds = self.xvecmodel(self.rsq48towav2vec(input_audios))
spk_embeds = self.spk_linear(spk_embeds).reshape(spk_embeds.shape[0], 16, 1, 32)
return spk_embeds
def extract_lyric_feats(self, lyric):
with torch.no_grad():
try:
text_encoder_hidden_states, text_mask, text_prompt_embeds = self.clap_embd_extractor(texts = lyric, return_one=False)
except:
text_encoder_hidden_states, text_mask, text_prompt_embeds = self.clap_embd_extractor(texts = [""] * len(lyric), return_one=False)
text_encoder_hidden_states = text_encoder_hidden_states.to(self.device)
text_mask = text_mask.to(self.device)
text_encoder_hidden_states, text_mask, text_prompt_embeds = \
pad_or_tunc_tolen(text_encoder_hidden_states, text_mask, text_prompt_embeds)
text_encoder_hidden_states = text_encoder_hidden_states.permute(0,2,1).contiguous()
return text_encoder_hidden_states, text_mask
def extract_energy_bar(self, input_audios):
if(input_audios.shape[-1] % self.num_samples_perseg > 0):
energy_bar = input_audios[:,:-1 * (input_audios.shape[-1] % self.num_samples_perseg)].reshape(input_audios.shape[0],-1,self.num_samples_perseg)
else:
energy_bar = input_audios.reshape(input_audios.shape[0],-1,self.num_samples_perseg)
energy_bar = (energy_bar.pow(2.0).mean(-1).sqrt() + 1e-6).log10() * 20 # B T
energy_bar = (energy_bar / 2.0 + 16).clamp(0,16).int()
energy_embedding = self.energy_embedding(energy_bar)
energy_embedding = energy_embedding.view(energy_embedding.shape[0], energy_embedding.shape[1] // 2, 2, 32).reshape(energy_embedding.shape[0], energy_embedding.shape[1] // 2, 64).permute(0,2,1) # b 128 t
return energy_embedding
def forward(self, input_audios, lyric, latents, latent_masks, validation_mode=False, \
additional_feats = ['spk', 'lyric'], \
train_rvq=True, train_ssl=False,layer=5):
if not hasattr(self,"device"):
self.device = input_audios.device
if not hasattr(self,"dtype"):
self.dtype = input_audios.dtype
device = self.device
input_audio_0 = input_audios[:,0,:]
input_audio_1 = input_audios[:,1,:]
input_audio_0 = self.preprocess_audio(input_audio_0)
input_audio_1 = self.preprocess_audio(input_audio_1)
input_audios_wav2vec = (input_audio_0 + input_audio_1) / 2.0
# energy_embedding = self.extract_energy_bar(input_audios)
# print("energy_embedding.shape:",energy_embedding.shape)
# with autocast(enabled=False):
if(train_ssl):
self.wav2vec.train()
wav2vec_embeds = self.extract_wav2vec_embeds(input_audios)
self.clap_embd_extractor.train()
prompt_embeds = self.extract_mert_embeds(input_audios)
if('spk' in additional_feats):
self.xvecmodel.train()
spk_embeds = self.extract_spk_embeds(input_audios).repeat(1,1,prompt_embeds.shape[-1]//2,1)
else:
with torch.no_grad():
with autocast(enabled=False):
bestrq_emb = self.extract_bestrq_embeds(input_audio_0,input_audio_1,layer)
# mert_emb = self.extract_mert_embeds(input_audios_mert)
wav2vec_embeds = self.extract_wav2vec_embeds(input_audios_wav2vec,bestrq_emb.shape[2])
bestrq_emb = bestrq_emb.detach()
if('lyric' in additional_feats):
text_encoder_hidden_states, text_mask = self.extract_lyric_feats(lyric)
else:
text_encoder_hidden_states, text_mask = None, None
# prompt_embeds_13 = torch.cat([mert_emb_13, energy_embedding], 1)
# print("prompt_embes.shape:",prompt_embeds.shape)
#prompt_embes.shape: torch.Size([3, 1088, 896])
# print("wav2vec_embeds.shape:",wav2vec_embeds.shape)
#wav2vec_embeds.shape:torch.Size([3, 1024, 896])
if(train_rvq):
quantized_bestrq_emb, _, _, commitment_loss_bestrq_emb, codebook_loss_bestrq_emb,_ = self.rvq_bestrq_emb(bestrq_emb) # b,d,t
else:
bestrq_emb = bestrq_emb.float()
self.rvq_bestrq_emb.eval()
# with autocast(enabled=False):
quantized_bestrq_emb, _, _, commitment_loss_bestrq_emb, codebook_loss_bestrq_emb,_ = self.rvq_bestrq_emb(bestrq_emb) # b,d,t
commitment_loss_bestrq_emb = commitment_loss_bestrq_emb.detach()
codebook_loss_bestrq_emb = codebook_loss_bestrq_emb.detach()
quantized_bestrq_emb = quantized_bestrq_emb.detach()
commitment_loss = commitment_loss_bestrq_emb
codebook_loss = codebook_loss_bestrq_emb
alpha=1
quantized_bestrq_emb = quantized_bestrq_emb * alpha + bestrq_emb * (1-alpha)
# print("quantized_bestrq_emb.shape:",quantized_bestrq_emb.shape)
# print("latent_masks.shape:",latent_masks.shape)
# quantized_bestrq_emb = torch.nn.functional.interpolate(quantized_bestrq_emb, size=(int(quantized_bestrq_emb.shape[-1]/999*937),), mode='linear', align_corners=True)
scenario = np.random.choice(['start_seg', 'other_seg'])
if(scenario == 'other_seg'):
for binx in range(input_audios.shape[0]):
# latent_masks[binx,0:64] = 1
latent_masks[binx,0:random.randint(64,128)] = 1
quantized_bestrq_emb = quantized_bestrq_emb.permute(0,2,1).contiguous()
# print("quantized_bestrq_emb.shape:",quantized_bestrq_emb.shape)
# print("quantized_bestrq_emb1.shape:",quantized_bestrq_emb.shape)
# print("latent_masks.shape:",latent_masks.shape)
quantized_bestrq_emb = (latent_masks > 0.5).unsqueeze(-1) * quantized_bestrq_emb \
+ (latent_masks < 0.5).unsqueeze(-1) * self.zero_cond_embedding1.reshape(1,1,1024)
if self.uncondition:
mask_indices = [k for k in range(quantized_bestrq_emb.shape[0]) if random.random() < 0.1]
if len(mask_indices) > 0:
quantized_bestrq_emb[mask_indices] = 0
# print("latents.shape:",latents.shape)
latents = latents.permute(0,2,1).contiguous()
latents = self.normfeat.project_sample(latents)
latents = latents.permute(0,2,1).contiguous()
incontext_latents = latents * ((latent_masks > 0.5) * (latent_masks < 1.5)).unsqueeze(-1).float()
attention_mask=(latent_masks > 0.5)
B, L = attention_mask.size()
attention_mask = attention_mask.view(B, 1, L)
attention_mask = attention_mask * attention_mask.transpose(-1, -2)
attention_mask = attention_mask.unsqueeze(1)
# print("incontext_latents.shape:",incontext_latents.shape)
# print("quantized_bestrq_emb.shape:",quantized_bestrq_emb.shape)
latent_mask_input = self.mask_emb(latent_masks)
#64+48+64+1024
loss,loss_re, loss_cos = self.cfm_wrapper.compute_loss(latents, [latent_mask_input,incontext_latents, quantized_bestrq_emb], latent_masks,attention_mask,wav2vec_embeds, validation_mode=validation_mode)
return loss,loss_re, loss_cos, commitment_loss.mean(), codebook_loss.mean()
def init_device_dtype(self, device, dtype):
self.device = device
self.dtype = dtype
@torch.no_grad()
def fetch_codes(self, input_audios, additional_feats,layer):
input_audio_0 = input_audios[[0],:]
input_audio_1 = input_audios[[1],:]
input_audio_0 = self.preprocess_audio(input_audio_0)
input_audio_1 = self.preprocess_audio(input_audio_1)
self.bestrq.eval()
# bestrq_middle,bestrq_last = self.extract_bestrq_embeds(input_audios)
# bestrq_middle = bestrq_middle.detach()
# bestrq_last = bestrq_last.detach()
bestrq_emb = self.extract_bestrq_embeds(input_audio_0,input_audio_1,layer)
bestrq_emb = bestrq_emb.detach()
# self.rvq_bestrq_middle.eval()
# quantized_bestrq_middle, codes_bestrq_middle, *_ = self.rvq_bestrq_middle(bestrq_middle) # b,d,t
# self.rvq_bestrq_last.eval()
# quantized_bestrq_last, codes_bestrq_last, *_ = self.rvq_bestrq_last(bestrq_last) # b,d,t
self.rvq_bestrq_emb.eval()
quantized_bestrq_emb, codes_bestrq_emb, *_ = self.rvq_bestrq_emb(bestrq_emb) # b,d,t
if('spk' in additional_feats):
self.xvecmodel.eval()
spk_embeds = self.extract_spk_embeds(input_audios)
else:
spk_embeds = None
# return [codes_prompt, codes_wav2vec], [prompt_embeds, wav2vec_embeds], spk_embeds
# return [codes_prompt_7, codes_prompt_13, codes_prompt_20, codes_wav2vec_half, codes_wav2vec_last], [prompt_embeds_7, prompt_embeds_13, prompt_embeds_20, wav2vec_embeds_half, wav2vec_embeds_last], spk_embeds
# return [codes_bestrq_middle, codes_bestrq_last], [bestrq_middle, bestrq_last], spk_embeds
return [codes_bestrq_emb], [bestrq_emb], spk_embeds
# return [codes_prompt_13, codes_wav2vec_last], [prompt_embeds_13, wav2vec_embeds_last], spk_embeds
@torch.no_grad()
def fetch_codes_batch(self, input_audios, additional_feats,layer):
input_audio_0 = input_audios[:,0,:]
input_audio_1 = input_audios[:,1,:]
input_audio_0 = self.preprocess_audio(input_audio_0)
input_audio_1 = self.preprocess_audio(input_audio_1)
self.bestrq.eval()
# bestrq_middle,bestrq_last = self.extract_bestrq_embeds(input_audios)
# bestrq_middle = bestrq_middle.detach()
# bestrq_last = bestrq_last.detach()
bestrq_emb = self.extract_bestrq_embeds(input_audio_0,input_audio_1,layer)
bestrq_emb = bestrq_emb.detach()
# self.rvq_bestrq_middle.eval()
# quantized_bestrq_middle, codes_bestrq_middle, *_ = self.rvq_bestrq_middle(bestrq_middle) # b,d,t
# self.rvq_bestrq_last.eval()
# quantized_bestrq_last, codes_bestrq_last, *_ = self.rvq_bestrq_last(bestrq_last) # b,d,t
self.rvq_bestrq_emb.eval()
quantized_bestrq_emb, codes_bestrq_emb, *_ = self.rvq_bestrq_emb(bestrq_emb) # b,d,t
if('spk' in additional_feats):
self.xvecmodel.eval()
spk_embeds = self.extract_spk_embeds(input_audios)
else:
spk_embeds = None
# return [codes_prompt, codes_wav2vec], [prompt_embeds, wav2vec_embeds], spk_embeds
# return [codes_prompt_7, codes_prompt_13, codes_prompt_20, codes_wav2vec_half, codes_wav2vec_last], [prompt_embeds_7, prompt_embeds_13, prompt_embeds_20, wav2vec_embeds_half, wav2vec_embeds_last], spk_embeds
# return [codes_bestrq_middle, codes_bestrq_last], [bestrq_middle, bestrq_last], spk_embeds
return [codes_bestrq_emb], [bestrq_emb], spk_embeds
@torch.no_grad()
def inference_codes(self, codes, spk_embeds, true_latents, latent_length, additional_feats, incontext_length=127,
guidance_scale=2, num_steps=20,
disable_progress=True, scenario='start_seg'):
classifier_free_guidance = guidance_scale > 1.0
device = self.device
dtype = self.dtype
# codes_bestrq_middle, codes_bestrq_last = codes
codes_bestrq_emb = codes[0]
batch_size = codes_bestrq_emb.shape[0]
quantized_bestrq_emb,_,_=self.rvq_bestrq_emb.from_codes(codes_bestrq_emb)
# quantized_bestrq_emb = torch.nn.functional.interpolate(quantized_bestrq_emb, size=(int(quantized_bestrq_emb.shape[-1]/999*937),), mode='linear', align_corners=True)
quantized_bestrq_emb = quantized_bestrq_emb.permute(0,2,1).contiguous()
print("quantized_bestrq_emb.shape:",quantized_bestrq_emb.shape)
# quantized_bestrq_emb = torch.nn.functional.interpolate(quantized_bestrq_emb, size=(int(quantized_bestrq_emb.shape[-1]/999*937),), mode='linear', align_corners=True)
if('spk' in additional_feats):
spk_embeds = spk_embeds.repeat(1,1,quantized_bestrq_emb.shape[-2],1).detach()
num_frames = quantized_bestrq_emb.shape[1]
num_channels_latents = self.num_channels
shape = (batch_size, num_frames, 64)
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
latent_masks = torch.zeros(latents.shape[0], latents.shape[1], dtype=torch.int64, device=latents.device)
latent_masks[:,0:latent_length] = 2
if(scenario=='other_seg'):
latent_masks[:,0:incontext_length] = 1
quantized_bestrq_emb = (latent_masks > 0.5).unsqueeze(-1) * quantized_bestrq_emb \
+ (latent_masks < 0.5).unsqueeze(-1) * self.zero_cond_embedding1.reshape(1,1,1024)
true_latents = true_latents.permute(0,2,1).contiguous()
true_latents = self.normfeat.project_sample(true_latents)
true_latents = true_latents.permute(0,2,1).contiguous()
incontext_latents = true_latents * ((latent_masks > 0.5) * (latent_masks < 1.5)).unsqueeze(-1).float()
incontext_length = ((latent_masks > 0.5) * (latent_masks < 1.5)).sum(-1)[0]
attention_mask=(latent_masks > 0.5)
B, L = attention_mask.size()
attention_mask = attention_mask.view(B, 1, L)
attention_mask = attention_mask * attention_mask.transpose(-1, -2)
attention_mask = attention_mask.unsqueeze(1)
latent_mask_input = self.mask_emb(latent_masks)
if('spk' in additional_feats):
# additional_model_input = torch.cat([quantized_bestrq_middle, quantized_bestrq_last, spk_embeds],1)
additional_model_input = torch.cat([quantized_bestrq_emb, spk_embeds],1)
else:
# additional_model_input = torch.cat([quantized_bestrq_middle, quantized_bestrq_last],1)
additional_model_input = torch.cat([quantized_bestrq_emb],1)
temperature = 1.0
t_span = torch.linspace(0, 1, num_steps + 1, device=quantized_bestrq_emb.device)
latents = self.cfm_wrapper.solve_euler(latents * temperature, latent_mask_input,incontext_latents, incontext_length, t_span, additional_model_input,attention_mask, guidance_scale)
latents[:,0:incontext_length,:] = incontext_latents[:,0:incontext_length,:]
latents = latents.permute(0,2,1).contiguous()
latents = self.normfeat.return_sample(latents)
# latents = latents.permute(0,2,1).contiguous()
return latents
@torch.no_grad()
def inference(self, input_audios, lyric, true_latents, latent_length, additional_feats, guidance_scale=2, num_steps=20,
disable_progress=True,layer=5,scenario='start_seg'):
codes, embeds, spk_embeds = self.fetch_codes(input_audios, additional_feats,layer)
latents = self.inference_codes(codes, spk_embeds, true_latents, latent_length, additional_feats, \
guidance_scale=guidance_scale, num_steps=num_steps, \
disable_progress=disable_progress,scenario=scenario)
return latents
@torch.no_grad()
def inference_rtf(self, input_audios, lyric, true_latents, latent_length, additional_feats, guidance_scale=2, num_steps=20,
disable_progress=True,layer=5,scenario='start_seg'):
codes, embeds, spk_embeds = self.fetch_codes(input_audios, additional_feats,layer)
import time
start = time.time()
latents = self.inference_codes(codes, spk_embeds, true_latents, latent_length, additional_feats, \
guidance_scale=guidance_scale, num_steps=num_steps, \
disable_progress=disable_progress,scenario=scenario)
return latents,time.time()-start
def prepare_latents(self, batch_size, num_frames, num_channels_latents, dtype, device):
divisor = 4
shape = (batch_size, num_channels_latents, num_frames, 32)
if(num_frames%divisor>0):
num_frames = round(num_frames/float(divisor))*divisor
shape = (batch_size, num_channels_latents, num_frames, 32)
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
return latents
|