File size: 18,315 Bytes
258fd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
from torch.utils.data import Dataset
from beartype.typing import Sequence, Callable, Optional, Dict, List
from beartype.door import is_bearable
import random
import os
from torchaudio.functional import resample
import torch
import typing as tp
from pathlib import Path
import torchaudio as ta
import torch.nn.functional as F
import soundfile
import numpy as np
import json
import yaml
import random
import librosa
from loguru import logger
import re


def _av_read(filepath, seek_time=0, duration=None):
    if duration is not None:
        sr = librosa.get_samplerate(filepath)
        offset = seek_time
        num_samples = int(duration * sr)
        wav, _ = librosa.load(filepath, sr=sr, offset=offset, duration=duration)
    else:
        wav, sr = librosa.load(filepath, sr=None, offset=seek_time)

    return wav, sr

def audio_read(filepath: tp.Union[str, Path], seek_time: float = 0.,
               duration: float = -1., pad: bool = True) -> tp.Tuple[torch.Tensor, int]:
    """Read audio by picking the most appropriate backend tool based on the audio format.

    Args:
        filepath (str or Path): Path to audio file to read.
        seek_time (float): Time at which to start reading in the file.
        duration (float): Duration to read from the file. If set to -1, the whole file is read.
        pad (bool): Pad output audio if not reaching expected duration.
    Returns:
        tuple of torch.Tensor, int: Tuple containing audio data and sample rate.
    """
    fp = Path(filepath)
    if fp.suffix in ['.flac', '.ogg']:  # TODO: check if we can safely use av_read for .ogg
        # There is some bug with ffmpeg and reading flac
        info = soundfile.info(filepath)
        frames = -1 if duration <= 0 else int(duration * info.samplerate)
        frame_offset = int(seek_time * info.samplerate)
        wav, sr = soundfile.read(filepath, start=frame_offset, frames=frames, dtype=np.float32)
        assert info.samplerate == sr, f"Mismatch of sample rates {info.samplerate} {sr}"
        wav = torch.from_numpy(wav).t().contiguous()
        if len(wav.shape) == 1:
            wav = torch.unsqueeze(wav, 0)
    elif (
        fp.suffix in ['.wav', '.mp3'] and fp.suffix[1:] in ta.utils.sox_utils.list_read_formats()
        and duration <= 0 and seek_time == 0
    ):
        # Torchaudio is faster if we load an entire file at once.
        wav, sr = librosa.load(fp, sr=None, mono=True)
    else:
        wav, sr = _av_read(filepath, seek_time, duration)
    if pad and duration > 0:
        expected_frames = int(duration * sr)
        wav = F.pad(torch.tensor(wav), (0, expected_frames - wav.shape[-1]))
    if not isinstance(wav, torch.Tensor):
        wav = torch.tensor(wav)
    return wav, sr

def random_seek_read(filepath, duration):
    if duration > 0:
        total_duration = librosa.get_duration(path=filepath)
        acceptable_start = max(0, total_duration - duration)
        wav, sr = audio_read(filepath, random.uniform(0, acceptable_start), duration, pad=True)
    else: 
        wav, sr = audio_read(filepath, 0, -1, pad=False)
    return wav, sr

def safe_random_seek_read(filepath, duration, sample_rate):
    try:
        wav, sr = random_seek_read(filepath, duration)
        if sr != sample_rate:
            wav = resample(wav, sr, sample_rate)
            sr = sample_rate
    except Exception as e:
        logger.error(f"Error reading {filepath}: {e}")
        sr = sample_rate
        wav = torch.zeros(sr * max(duration, 0), dtype=torch.float32)
    return wav, sr

def read_jsonlike(path: os.PathLike):
    #json or jsonl
    if str(path).endswith(".json"):
        with open(path, 'r', encoding='utf8') as f:
            data = json.load(f)
        return data
    elif str(path).endswith(".jsonl"):
        with open(path, 'r', encoding='utf8') as f:
            data = [json.loads(line) for line in f.readlines()]
        return data
    else:
        raise ValueError("Unknown file format")

dist_prob_map = {
    1: (1.0,),
    2: (0.5, 0.5),
    3: (0.3, 0.4, 0.3),
    4: (0.2, 0.3, 0.3, 0.2),
    5: (0.2, 0.2, 0.3, 0.2, 0.1),
    6: (0.1, 0.15, 0.2, 0.2, 0.2, 0.15),
    7: (0.05, 0.1, 0.1, 0.2, 0.25, 0.2, 0.1),
    8: (0.03, 0.05, 0.1, 0.15, 0.25, 0.2, 0.1, 0.12),
    9: (0.02, 0.1, 0.1, 0.1, 0.15, 0.2, 0.15, 0.1, 0.08),
    10: (0.01, 0.1, 0.1, 0.15, 0.2, 0.15, 0.1, 0.05, 0.05, 0.09)
}

dist_prob_map_low = {
    1: (1.0,),
    2: (0.8, 0.2),
    3: (0.8, 0.1, 0.1),
    4: (0.7, 0.1, 0.1, 0.1),
    5: (0.7, 0.1, 0.1, 0.05, 0.05),
    6: (0.7, 0.1, 0.05, 0.05, 0.05, 0.05),
}


_bpm_range_rights = (
    (40, '20-40'),
    (60, '40-60'),
    (66, '60-66'),
    (76, '66-76'),
    (108, '76-108'),
    (120, '108-120'),
    (168, '120-168'),
    (176, '168-176'),
    (200, '176-200')
)
_bpm_desc_map = {
    '20-40': ("glacial pace", "extremely slow tempo", "crawl-like speed", "snail's pace", "almost motionless rhythm", "Larghissimo"),
    '40-60': ("broad and slow", "spacious tempo", "unhurried pace", "calm rhythm", "relaxed speed", "Largo"),
    '60-66': ("gentle tempo", "leisurely pace", "easy-going rhythm", "unrushed speed", "smooth and slow", 'Larghetto'),
    '66-76': ("slow and steady", "deliberate tempo", "unhurried pace", "relaxed rhythm", "easy speed", 'Adagio'),
    '76-108': ("walking pace", "moderate tempo", "steady rhythm", "balanced speed", "easy-flowing tempo", "Andante"),
    '108-120': ("medium pace", "comfortable tempo", "even rhythm", "measured speed", "controlled tempo", 'Moderato'), 
    '120-168': ("quick and lively", "brisk pace", "energetic tempo", "upbeat rhythm", "spirited speed", 'Allegro'),
    '168-176': ("lively and fast", "bright tempo", "sprightly pace", "vibrant rhythm", "animated speed", 'Vivace'),
    '176-200': ("very fast tempo", "rapid pace", "high-speed rhythm", "hurried speed", "accelerated tempo", 'Presto'),
    '>200': ("extremely fast", "breakneck speed", "blazing tempo", "lightning-fast rhythm", "supercharged pace", 'Prestissimo')
}
_bpm_desc_map_zh = {
    '20-40': ("极度缓慢", "极慢的节奏", "悠长的旋律", "迟缓的节奏", "几乎静止的节奏", "甚缓"),
    '40-60': ("宽广而缓慢", "宽敞的节奏", "从容不迫的速度", "平静的节奏", "轻松的速度", "广板"),
    '60-66': ("柔和的节奏", "悠闲的速度", "轻松的节奏", "不慌不忙的速度", "平滑而缓慢", '小广板'),
    '66-76': ("缓慢而稳定", "沉稳的旋律", "从容不迫的速度", "轻松的节奏", "轻松的速度", '慢板'),
    '76-108': ("步行速度", "适中的节奏", "稳定的节奏", "平衡的速度", "流畅的节奏", "行板"),
    '108-120': ("中等速度", "舒适的节奏", "均匀的节奏", "有节制的速度", "稳定的氛围", '中板'), 
    '120-168': ("快速而生动", "轻快的速度", "充满活力的节奏", "欢快的节奏", "富有精神的速度", '快板'),
    '168-176': ("生动而快速", "明快的节奏", "活泼的速度", "充满活力的节奏", "生气勃勃的速度", '活泼的'),
    '176-200': ("非常快的节奏", "快速的速度", "高速的节奏", "匆忙的速度", "加速的节奏", '急板'),
    '>200': ("极快的速度", "极速旋律", "炽热的节奏", "闪电般的节奏", "疾驰的速度", '最急板')
}
def get_bpm_range(bpm):
    bpm = int(bpm)
    for right, tag in _bpm_range_rights:
        if bpm <= right:
            return tag
    return '>200'

def gen_bpm_descript(bpm, lang='en'):
    bpm_range = get_bpm_range(bpm)
    if lang == 'en':
        return random.choice(_bpm_desc_map[bpm_range])
    elif lang == 'zh':
        return random.choice(_bpm_desc_map_zh[bpm_range])
    else:
        raise ValueError(f"Unknown language {lang}")

def read_translate(translate: Optional[Dict[str, os.PathLike]]):
    if translate is None:
        return None 
    return {k: read_jsonlike(path) for k, path in translate.items()}

   
def tags_to_desc(tag_list, sep=',') -> str:
    if not isinstance(tag_list, Sequence):
        return str(tag_list)
    if isinstance(tag_list, str):
        return tag_list
    if len(tag_list) <= 0:
        return ''
    elif len(tag_list) <= 5:
        probs = dist_prob_map[len(tag_list)]
        tags_num = random.choices(range(1, len(tag_list)+1), probs)[0]
        random.shuffle(tag_list)
        tag_list = tag_list[:tags_num]
        return sep.join(tag_list)
    else:
        probs = dist_prob_map[5]
        tags_num = random.choices(range(1, 6), probs)[0]
        random.shuffle(tag_list)
        tag_list = tag_list[:tags_num]
        return sep.join(tag_list)


class PromptTemplate:
    def __init__(self, template_text: str, tag_map: Dict[str, str], lang:str ='en'):
        self.template_text = template_text
        self.tag_map = tag_map
        self.lang = lang
    
    @property
    def tags(self):
        return tuple(self.tag_map.keys())

    def apply(self, **kwargs):
        for tag in list(kwargs.keys()):
            if kwargs[tag] == '':
                kwargs.pop(tag)
        for tag in self.tags:
            if tag in kwargs:
                kwargs[tag] = self.tag_map[tag].format(**{tag: kwargs[tag]}).strip('[]')
            else:
                kwargs[tag] = ''
        prompt = self.template_text.format(**kwargs)
        
        return self.beautify(prompt)
    
    def beautify(self, text):
        if self.lang == 'en':
            return self._beautify_en(text)
        elif self.lang == 'zh':
            return self._beautify_zh(text)
        else:
            raise ValueError(f'Unknown language {self.lang}')
        
    @staticmethod
    def _beautify_en(text):
        # no continuous commas without content between them
        text = re.sub(r'[,\s]*,[,\s]*', r', ', text)
        # no continuous whitespace
        text = re.sub(r'\s+', ' ', text)
        # the comma is NOT followed by whitespace, and should be followed by ONE whitespace
        text = re.sub(r'\s+,', r',', text)
        text = re.sub(r',\s+', r', ', text)
        # no whitespace before the full stop
        text = re.sub(r'\s+\.', r'.', text)
        # strip whitespace, comma, and replace ',.'
        text = text.strip(' ,')
        text = text.replace(',.', '.')
        return text
    
    @staticmethod
    def _beautify_zh(text):
        # no continuous commas without content between them
        text = re.sub(r'[,、\s]*,[,、\s]*', r',', text)
        text = re.sub(r'[,、\s]*、[,、\s]*', r'、', text)
        # assume there should be NO whitespace in Chinese
        text = re.sub(r'\s+', r'', text)
        # strip whitespace, comma, and replace ',。'
        text = text.strip(', 、')
        text = text.replace(',。', '。')
        return text

    def __repr__(self):
        return f'PromptTemplate({self.template_text!r}, {self.tag_map!r})'

    __str__ = __repr__

def parse_prompt_template(prompt_template_text, lang='en'):
    span_pattern = re.compile(r'\[.*?{.+?}.*?\]', re.DOTALL)
    tag_pattern = re.compile(r'{.+?}', re.DOTALL)

    template_text = prompt_template_text.strip()
    span_texts = span_pattern.findall(prompt_template_text)
    tag_map = {} 
    for span_text in span_texts:
        tag = tag_pattern.findall(span_text)[0].strip('{}')
        tag_map[tag] = span_text
        template_text = template_text.replace(span_text, '{'+tag+'}')
    
    return PromptTemplate(template_text=template_text, tag_map=tag_map, lang=lang)

def load_prompt_templates(path, num = 5, lang='en') -> List[PromptTemplate]:
    with open(path, 'r') as f:
        lines = f.readlines()
    cnt = 0
    pts = []
    for line in lines:
        pt = parse_prompt_template(line, lang=lang)
        cnt += 1
        if len(pt.tags) < num:
            logger.error(f'Not enough tags on {path} in line {cnt}: {pt.tags}')
        pts.append(pt)

    return pts


class AudioStockDataset(Dataset):
    def __init__(self, 
                num_examples:int,
                metadata_path:str, 
                duration:float=60, 
                sr:int = 0, 
                return_path = False, 
                return_audio = True, 
                prompt_template_path: os.PathLike = None, 
                tag_types = [],
                lang = 'en',
                translate:Optional[Dict[str, os.PathLike]] = None
                ):
        self.duration = duration
        self.MAX_DURATION = 360
        self._load_metadata(metadata_path) 
        if num_examples > 0:
            self.random_choose = True
            self.dataset_len = num_examples
        else:
            self.random_choose = False
            self.dataset_len = len(self.data)
        self.sr = sr
        self.return_path = return_path
        self.return_audio = return_audio

        self.use_dynamic_prompt = prompt_template_path is not None
        if self.use_dynamic_prompt:
            self.prompt_templates = load_prompt_templates(prompt_template_path, num = len(tag_types), lang = lang)
        self.tag_types = tag_types

        self.lang = lang
        self.translate = read_translate(translate)

    def _load_metadata(self, metadata_path):
        total_len = 0; valid_len = 0
        with open(metadata_path) as fp:
            lines = fp.readlines()
            self.data = []
            for line in lines: 
                item = json.loads(line)
                total_len += 1
                if(item['duration']>self.duration and item['duration']<self.MAX_DURATION):
                    valid_len += 1
                    self.data.append(item)
        print("Filter data from {} to {}".format(total_len, valid_len))
        self.is_info_recorded = bool('Tags' in self.data[0])

    def __len__(self):
        return self.dataset_len
    
    def __getitem__(self, idx):
        first_try = True
        try_cnt = 0
        while True:
            try:
                if(self.random_choose or not first_try):
                    index2 = np.random.randint(0,len(self.data))
                else:
                    index2 = idx
                first_try = False
                return self.getitem_main(index2)
            except:
                print("Error loadding ", self.data[idx]["path"])
                try_cnt += 1
                if(try_cnt>10):
                    raise ValueError()

    def getitem_main(self, idx):
        path:str = self.data[idx]["path"]
        json_path = path[:path.rfind('.')] + ".json"
        if self.is_info_recorded:
            item = self.data[idx]
        else:
            with open(json_path) as fp:
                item:dict = json.load(fp)
        description = self.generate_description(item)
        if self.return_audio:
            audio, sr = safe_random_seek_read(path, duration=self.duration, sample_rate=self.sr)
        else:
            audio = None
        if self.return_path:
            return audio, description, path
        return audio, description
    


    def generate_description(self, item):
        if self.use_dynamic_prompt:
            # dynamically generate prompt from given prompt template
            prompt_template = random.choice(self.prompt_templates)
            description = self.generate_description_dynamic(item, prompt_template)
        else:
            # use ordinary static prompt instead
            description = self.generate_description_ordinary(item)
        return description
    
    def generate_description_dynamic(self, data, prompt_template: PromptTemplate):
        exists_tag = [key for key in data if (key in self.tag_types) and (data[key] is not None) and (len(data[key]) > 0)]

        if len(exists_tag) > 0:
            probs = dist_prob_map[len(exists_tag)]
            tags_num = random.choices(range(1, len(exists_tag)+1), probs)[0]
            random.shuffle(exists_tag)
            tags = exists_tag[:tags_num]
            tags_args = {tag: self.tags_to_desc(data[tag], tag) for tag in tags}
            tags_args = self.handle_BPM_tag(tags_args)
            prompt = prompt_template.apply(**tags_args)
        else: 
            # no strong tags, use all weak tags instead
            prompt = prompt_template.apply()
        
        return prompt
    
    def tags_to_desc(self, tag_list, tag_type) -> str:
        if self.lang == 'en':
            return tags_to_desc(tag_list)
        elif self.lang == 'zh':
            if tag_type == 'BPM':
                return tags_to_desc(tag_list, sep='、')
            translator = self.translate[tag_type]
            translated_tag_list = [translator[tag] for tag in tag_list if tag in translator ]
            return tags_to_desc(translated_tag_list, sep='、')
    
    def handle_BPM_tag(self, tags_args):
        if "BPM" in tags_args and 'BPMDescript' in  self.tag_types:
            bpm = tags_args["BPM"]
            del tags_args["BPM"]
            tag_types_used = random.choice((('BPM',), ('BPMDescript',), ('BPM', 'BPMDescript')))
            for tag_type in tag_types_used:
                tags_args[tag_type] = bpm if tag_type == 'BPM' else gen_bpm_descript(bpm, lang=self.lang)
        return tags_args

    def generate_description_ordinary(self, data, thresh = 0.3):
        if self.lang != 'en':
            raise ValueError(f'Language {self.lang} is not supported for ordinary description generation')
        description = f'a piece of music by {data["Artist"]}'
        
        # Add genre if available
        if data["Genre"] and random.random() > thresh:
            genres = ', '.join(data["Genre"])
            description += f', belonging to the {genres} genres'
        
        # Add moods if available
        if data["Tags"] and random.random() > thresh:
            tags = ', '.join(data["Tags"])
            description += f'. This track contains the tags:{tags}'

        # Add moods if available
        if data["Mood"] and random.random() > thresh:
            moods = ', '.join(data["Mood"])
            description += f'. This track conveys a {moods} mood.'
        
        # Add instruments if available
        if data["Instrument"] and random.random() > thresh:
            instruments = ', '.join(data["Instrument"])
            description += f'. and primarily features the following instruments: {instruments}'
        
        # Add a period to end the description
        description += '.'
        
        return description