File size: 6,987 Bytes
258fd02
 
 
 
 
 
 
 
 
 
 
 
 
 
d658154
258fd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d658154
 
 
258fd02
 
 
 
d658154
 
 
 
 
 
 
258fd02
 
 
 
d658154
258fd02
 
 
 
 
 
 
 
 
 
d658154
 
258fd02
d658154
258fd02
 
 
 
 
 
 
d658154
258fd02
 
 
 
 
 
 
 
 
d658154
258fd02
d658154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258fd02
 
 
 
 
 
d658154
258fd02
d658154
258fd02
 
d658154
258fd02
 
d658154
 
 
 
 
258fd02
d658154
258fd02
d658154
 
258fd02
 
 
d658154
258fd02
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import sys
import os

import time
import json
import torch
import torchaudio
import numpy as np
from omegaconf import OmegaConf

from codeclm.trainer.codec_song_pl import CodecLM_PL
from codeclm.models import CodecLM
from third_party.demucs.models.pretrained import get_model_from_yaml

auto_prompt_type = ['Pop', 'R&B', 'Dance', 'Jazz', 'Folk', 'Rock', 'Chinese Style', 'Chinese Tradition', 'Metal', 'Reggae', 'Chinese Opera', 'Auto']

class Separator:
    def __init__(self, dm_model_path='third_party/demucs/ckpt/htdemucs.pth', dm_config_path='third_party/demucs/ckpt/htdemucs.yaml', gpu_id=0) -> None:
        if torch.cuda.is_available() and gpu_id < torch.cuda.device_count():
            self.device = torch.device(f"cuda:{gpu_id}")
        else:
            self.device = torch.device("cpu")
        self.demucs_model = self.init_demucs_model(dm_model_path, dm_config_path)

    def init_demucs_model(self, model_path, config_path):
        model = get_model_from_yaml(config_path, model_path)
        model.to(self.device)
        model.eval()
        return model
    
    def load_audio(self, f):
        a, fs = torchaudio.load(f)
        if (fs != 48000):
            a = torchaudio.functional.resample(a, fs, 48000)
        if a.shape[-1] >= 48000*10:
            a = a[..., :48000*10]
        else:
            a = torch.cat([a, a], -1)
        return a[:, 0:48000*10]
    
    def run(self, audio_path, output_dir='tmp', ext=".flac"):
        os.makedirs(output_dir, exist_ok=True)
        name, _ = os.path.splitext(os.path.split(audio_path)[-1])
        output_paths = []

        for stem in self.demucs_model.sources:
            output_path = os.path.join(output_dir, f"{name}_{stem}{ext}")
            if os.path.exists(output_path):
                output_paths.append(output_path)
        if len(output_paths) == 1:  # 4
            vocal_path = output_paths[0]
        else:
            drums_path, bass_path, other_path, vocal_path = self.demucs_model.separate(audio_path, output_dir, device=self.device)
            for path in [drums_path, bass_path, other_path]:
                os.remove(path)
        full_audio = self.load_audio(audio_path)
        vocal_audio = self.load_audio(vocal_path)
        bgm_audio = full_audio - vocal_audio
        return full_audio, vocal_audio, bgm_audio



if __name__ == "__main__":
    torch.backends.cudnn.enabled = False
    OmegaConf.register_new_resolver("eval", lambda x: eval(x))
    OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx])
    OmegaConf.register_new_resolver("get_fname", lambda: os.path.splitext(os.path.basename(sys.argv[1]))[0])
    OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x)))
    np.random.seed(int(time.time()))    
    ckpt_path = sys.argv[1]
    input_jsonl = sys.argv[2]
    save_dir = sys.argv[3]
    cfg_path = os.path.join(ckpt_path, 'config.yaml')
    ckpt_path = os.path.join(ckpt_path, 'model.pt')
    cfg = OmegaConf.load(cfg_path)
    cfg.mode = 'inference'
    max_duration = cfg.max_dur
    
    # Define model or load pretrained model
    model_light = CodecLM_PL(cfg, ckpt_path)

    model_light = model_light.eval().cuda()
    model_light.audiolm.cfg = cfg
    model = CodecLM(name = "tmp",
        lm = model_light.audiolm,
        audiotokenizer = model_light.audio_tokenizer,
        max_duration = max_duration,
        seperate_tokenizer = model_light.seperate_tokenizer,
    )
    separator = Separator()
    auto_prompt = torch.load('ckpt/prompt.pt')
    merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
    cfg_coef = 1.5 #25
    temp = 0.9
    top_k = 50
    top_p = 0.0
    record_tokens = True
    record_window = 50

    model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef,
                                top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window)
    os.makedirs(save_dir, exist_ok=True)
    os.makedirs(save_dir + "/audios", exist_ok=True)
    os.makedirs(save_dir + "/jsonl", exist_ok=True)

    with open(input_jsonl, "r") as fp:
        lines = fp.readlines()

    new_items = []
    for line in lines:
        item = json.loads(line)
        target_wav_name = f"{save_dir}/audios/{item['idx']}.flac"
        lyric = item["gt_lyric"]
        descriptions = item["descriptions"] if "descriptions" in item else None
        # get prompt audio
        if "prompt_audio_path" in item:
            assert os.path.exists(item['prompt_audio_path']), f"prompt_audio_path {item['prompt_audio_path']} not found"
            assert 'auto_prompt_audio_type' not in item, f"auto_prompt_audio_type and prompt_audio_path cannot be used together"
            pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path'])
            melody_is_wav = True
        elif "auto_prompt_audio_type" in item:
            assert item["auto_prompt_audio_type"] in auto_prompt_type, f"auto_prompt_audio_type {item['auto_prompt_audio_type']} not found"
            if item["auto_prompt_audio_type"] == "Auto": 
                prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
            else:
                prompt_token = auto_prompt[item["auto_prompt_audio_type"]][np.random.randint(0, len(auto_prompt[item["auto_prompt_audio_type"]]))]
            pmt_wav = prompt_token[:,[0],:]
            vocal_wav = prompt_token[:,[1],:]
            bgm_wav = prompt_token[:,[2],:]
            melody_is_wav = False
        else:
            pmt_wav = None
            vocal_wav = None
            bgm_wav = None
            melody_is_wav = True
            
        generate_inp = {
            'lyrics': [lyric.replace("  ", " ")],
            'descriptions': [descriptions],
            'melody_wavs': pmt_wav,
            'vocal_wavs': vocal_wav,
            'bgm_wavs': bgm_wav,
            'melody_is_wav': melody_is_wav,
        }
        start_time = time.time()
        with torch.autocast(device_type="cuda", dtype=torch.float16):
            tokens = model.generate(**generate_inp, return_tokens=True)
        mid_time = time.time()
            
        with torch.no_grad():
            if melody_is_wav:   
                wav_seperate = model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
            else:
                wav_seperate = model.generate_audio(tokens)
        end_time = time.time()
        torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate)
        print(f"process{item['idx']}, lm cost {mid_time - start_time}s, diffusion cost {end_time - mid_time}")

        item["idx"] = f"{item['idx']}"
        item["wav_path"] = target_wav_name
        new_items.append(item)
    
    src_jsonl_name = os.path.split(input_jsonl)[-1]
    with open(f"{save_dir}/jsonl/{src_jsonl_name}.jsonl", "w", encoding='utf-8') as fw:
        for item in new_items:
            fw.writelines(json.dumps(item, ensure_ascii=False)+"\n")