File size: 7,539 Bytes
258fd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d658154
 
 
 
 
 
 
 
258fd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
"""
Tokenizer or wrapper around existing models.
Also defines the main interface that a model must follow to be usable as an audio tokenizer.
"""

from abc import ABC, abstractmethod
import logging
import typing as tp
import torch
from torch import nn


logger = logging.getLogger()


class AudioTokenizer(ABC, nn.Module):
    """Base API for all compression model that aim at being used as audio tokenizers
    with a language model.
    """

    @abstractmethod
    def forward(self, x: torch.Tensor) :
        ...

    @abstractmethod
    def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
        """See `EncodecModel.encode`."""
        ...

    @abstractmethod
    def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None):
        """See `EncodecModel.decode`."""
        ...

    @abstractmethod
    def decode_latent(self, codes: torch.Tensor):
        """Decode from the discrete codes to continuous latent space."""
        ...

    @property
    @abstractmethod
    def channels(self) -> int:
        ...

    @property
    @abstractmethod
    def frame_rate(self) -> float:
        ...

    @property
    @abstractmethod
    def sample_rate(self) -> int:
        ...

    @property
    @abstractmethod
    def cardinality(self) -> int:
        ...

    @property
    @abstractmethod
    def num_codebooks(self) -> int:
        ...

    @property
    @abstractmethod
    def total_codebooks(self) -> int:
        ...

    @abstractmethod
    def set_num_codebooks(self, n: int):
        """Set the active number of codebooks used by the quantizer."""
        ...

    @staticmethod
    def get_pretrained(
            name: str, 
            vae_config: str,
            vae_model: str,
            device: tp.Union[torch.device, str] = 'cpu', 
            mode='extract'
            ) -> 'AudioTokenizer':
        """Instantiate a AudioTokenizer model from a given pretrained model.

        Args:
            name (Path or str): name of the pretrained model. See after.
            device (torch.device or str): Device on which the model is loaded.
        """

        model: AudioTokenizer
        if name.split('_')[0] == 'Flow1dVAESeparate':
            model_type = name.split('_', 1)[1]
            logger.info("Getting pretrained compression model from semantic model %s", model_type)
            model = Flow1dVAESeparate(model_type, vae_config, vae_model)
        elif name.split('_')[0] == 'Flow1dVAE1rvq':
            model_type = name.split('_', 1)[1]
            logger.info("Getting pretrained compression model from semantic model %s", model_type)
            model = Flow1dVAE1rvq(model_type, vae_config, vae_model)
        else:
            raise NotImplementedError("{} is not implemented in models/audio_tokenizer.py".format(
                name))
        return model.to(device).eval()
    

class Flow1dVAE1rvq(AudioTokenizer):
    def __init__(
        self, 
        model_type: str = "model_2_fixed.safetensors",
        vae_config: str = "",
        vae_model: str = "",
        ):
        super().__init__()

        from codeclm.tokenizer.Flow1dVAE.generate_1rvq import Tango
        model_path = model_type
        self.model = Tango(model_path=model_path, vae_config=vae_config, vae_model=vae_model, device='cuda')
        print ("Successfully loaded checkpoint from:", model_path)

            
        self.n_quantizers = 1

    def forward(self, x: torch.Tensor) :
        # We don't support training with this.
        raise NotImplementedError("Forward and training with DAC not supported.")
    
    @torch.no_grad()
    def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
        if x.ndim == 2:
            x = x.unsqueeze(1)
        codes = self.model.sound2code(x) # [B T] -> [B N T]
        return codes, None

    
    @torch.no_grad()    
    def decode(self, codes: torch.Tensor, prompt = None, scale: tp.Optional[torch.Tensor] = None, ncodes=9):
        wav = self.model.code2sound(codes, prompt=prompt, guidance_scale=1.5, 
                                    num_steps=50, disable_progress=False) # [B,N,T] -> [B,T]
        return wav[None]

    
    @torch.no_grad()
    def decode_latent(self, codes: torch.Tensor):
        """Decode from the discrete codes to continuous latent space."""
        # import pdb; pdb.set_trace()
        return self.model.quantizer.from_codes(codes.transpose(1,2))[0]

    @property
    def channels(self) -> int:
        return 2

    @property
    def frame_rate(self) -> float:
        return 25

    @property
    def sample_rate(self) -> int:
        return self.samplerate

    @property
    def cardinality(self) -> int:
        return 10000

    @property
    def num_codebooks(self) -> int:
        return self.n_quantizers

    @property
    def total_codebooks(self) -> int:
        # return self.model.RVQ
        return 1

    def set_num_codebooks(self, n: int):
        """Set the active number of codebooks used by the quantizer.
        """
        assert n >= 1
        assert n <= self.total_codebooks
        self.n_quantizers = n


class Flow1dVAESeparate(AudioTokenizer):
    def __init__(
        self, 
        model_type: str = "model_2.safetensors",
        vae_config: str = "",
        vae_model: str = "",
        ):
        super().__init__()

        from codeclm.tokenizer.Flow1dVAE.generate_septoken import Tango
        model_path = model_type
        self.model = Tango(model_path=model_path, vae_config=vae_config, vae_model=vae_model, device='cuda')
        print ("Successfully loaded checkpoint from:", model_path)

            
        self.n_quantizers = 1

    def forward(self, x: torch.Tensor) :
        # We don't support training with this.
        raise NotImplementedError("Forward and training with DAC not supported.")
    
    @torch.no_grad()
    def encode(self, x_vocal: torch.Tensor, x_bgm: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
        if x_vocal.ndim == 2:
            x_vocal = x_vocal.unsqueeze(1)
        if x_bgm.ndim == 2:
            x_bgm = x_bgm.unsqueeze(1)
        codes_vocal, codes_bgm = self.model.sound2code(x_vocal, x_bgm)
        return codes_vocal, codes_bgm
    
    @torch.no_grad()    
    def decode(self, codes: torch.Tensor, prompt_vocal = None, prompt_bgm = None):
        wav = self.model.code2sound(codes, prompt_vocal=prompt_vocal, prompt_bgm=prompt_bgm, guidance_scale=1.5, 
                                    num_steps=50, disable_progress=False) # [B,N,T] -> [B,T]
        return wav[None]

    
    @torch.no_grad()
    def decode_latent(self, codes: torch.Tensor):
        """Decode from the discrete codes to continuous latent space."""
        # import pdb; pdb.set_trace()
        return self.model.quantizer.from_codes(codes.transpose(1,2))[0]

    @property
    def channels(self) -> int:
        return 2

    @property
    def frame_rate(self) -> float:
        return 25

    @property
    def sample_rate(self) -> int:
        return self.samplerate

    @property
    def cardinality(self) -> int:
        return 10000

    @property
    def num_codebooks(self) -> int:
        return self.n_quantizers

    @property
    def total_codebooks(self) -> int:
        # return self.model.RVQ
        return 1

    def set_num_codebooks(self, n: int):
        """Set the active number of codebooks used by the quantizer.
        """
        assert n >= 1
        assert n <= self.total_codebooks
        self.n_quantizers = n