Spaces:
Running
on
L40S
Running
on
L40S
File size: 10,369 Bytes
258fd02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@File : audio.py
@Time : 2023/8/8 下午7:18
@Author : waytan
@Contact : [email protected]
@License : (C)Copyright 2023, Tencent
@Desc : Audio
"""
import json
import subprocess as sp
import typing as tp
from pathlib import Path
import lameenc
import julius
import torch
import numpy as np
import torchaudio as ta
from contextlib import contextmanager
import tempfile
import os
@contextmanager
def temp_filenames(count: int, delete=True):
names = []
try:
for _ in range(count):
names.append(tempfile.NamedTemporaryFile(delete=False).name)
yield names
finally:
if delete:
for name in names:
os.unlink(name)
def _read_info(path):
stdout_data = sp.check_output([
'ffprobe', "-loglevel", "panic",
str(path), '-print_format', 'json', '-show_format', '-show_streams'
])
return json.loads(stdout_data.decode('utf-8'))
class AudioFile:
"""
Allows to read audio from any format supported by ffmpeg, as well as resampling or
converting to mono on the fly. See :method:`read` for more details.
"""
def __init__(self, path: Path):
self.path = Path(path)
self._info = None
def __repr__(self):
features = [("path", self.path)]
features.append(("samplerate", self.samplerate()))
features.append(("channels", self.channels()))
features.append(("streams", len(self)))
features_str = ", ".join(f"{name}={value}" for name, value in features)
return f"AudioFile({features_str})"
@property
def info(self):
if self._info is None:
self._info = _read_info(self.path)
return self._info
@property
def duration(self):
return float(self.info['format']['duration'])
@property
def _audio_streams(self):
return [
index for index, stream in enumerate(self.info["streams"])
if stream["codec_type"] == "audio"
]
def __len__(self):
return len(self._audio_streams)
def channels(self, stream=0):
return int(self.info['streams'][self._audio_streams[stream]]['channels'])
def samplerate(self, stream=0):
return int(self.info['streams'][self._audio_streams[stream]]['sample_rate'])
def read(self,
seek_time=None,
duration=None,
streams=slice(None),
samplerate=None,
channels=None):
"""
Slightly more efficient implementation than stempeg,
in particular, this will extract all stems at once
rather than having to loop over one file multiple times
for each stream.
Args:
seek_time (float): seek time in seconds or None if no seeking is needed.
duration (float): duration in seconds to extract or None to extract until the end.
streams (slice, int or list): streams to extract, can be a single int, a list or
a slice. If it is a slice or list, the output will be of size [S, C, T]
with S the number of streams, C the number of channels and T the number of samples.
If it is an int, the output will be [C, T].
samplerate (int): if provided, will resample on the fly. If None, no resampling will
be done. Original sampling rate can be obtained with :method:`samplerate`.
channels (int): if 1, will convert to mono. We do not rely on ffmpeg for that
as ffmpeg automatically scale by +3dB to conserve volume when playing on speakers.
See https://sound.stackexchange.com/a/42710.
Our definition of mono is simply the average of the two channels. Any other
value will be ignored.
"""
streams = np.array(range(len(self)))[streams]
single = not isinstance(streams, np.ndarray)
if single:
streams = [streams]
if duration is None:
target_size = None
query_duration = None
else:
target_size = int((samplerate or self.samplerate()) * duration)
query_duration = float((target_size + 1) / (samplerate or self.samplerate()))
with temp_filenames(len(streams)) as filenames:
command = ['ffmpeg', '-y']
command += ['-loglevel', 'panic']
if seek_time:
command += ['-ss', str(seek_time)]
command += ['-i', str(self.path)]
for stream, filename in zip(streams, filenames):
command += ['-map', f'0:{self._audio_streams[stream]}']
if query_duration is not None:
command += ['-t', str(query_duration)]
command += ['-threads', '1']
command += ['-f', 'f32le']
if samplerate is not None:
command += ['-ar', str(samplerate)]
command += [filename]
sp.run(command, check=True)
wavs = []
for filename in filenames:
wav = np.fromfile(filename, dtype=np.float32)
wav = torch.from_numpy(wav)
wav = wav.view(-1, self.channels()).t()
if channels is not None:
wav = convert_audio_channels(wav, channels)
if target_size is not None:
wav = wav[..., :target_size]
wavs.append(wav)
wav = torch.stack(wavs, dim=0)
if single:
wav = wav[0]
return wav
def convert_audio_channels(wav, channels=2):
"""Convert audio to the given number of channels."""
*shape, src_channels, length = wav.shape
if src_channels == channels:
pass
elif channels == 1:
# Case 1:
# The caller asked 1-channel audio, but the stream have multiple
# channels, downmix all channels.
wav = wav.mean(dim=-2, keepdim=True)
elif src_channels == 1:
# Case 2:
# The caller asked for multiple channels, but the input file have
# one single channel, replicate the audio over all channels.
wav = wav.expand(*shape, channels, length)
elif src_channels >= channels:
# Case 3:
# The caller asked for multiple channels, and the input file have
# more channels than requested. In that case return the first channels.
wav = wav[..., :channels, :]
else:
# Case 4: What is a reasonable choice here?
raise ValueError('The audio file has less channels than requested but is not mono.')
return wav
def convert_audio(wav, from_samplerate, to_samplerate, channels):
"""Convert audio from a given samplerate to a target one and target number of channels."""
wav = convert_audio_channels(wav, channels)
return julius.resample_frac(wav, from_samplerate, to_samplerate)
def i16_pcm(wav):
"""Convert audio to 16 bits integer PCM format."""
if wav.dtype.is_floating_point:
return (wav.clamp_(-1, 1) * (2**15 - 1)).short()
else:
return wav
def f32_pcm(wav):
"""Convert audio to float 32 bits PCM format."""
if wav.dtype.is_floating_point:
return wav
else:
return wav.float() / (2**15 - 1)
def as_dtype_pcm(wav):
"""Convert audio to either f32 pcm or i16 pcm depending on the given dtype."""
if wav.dtype.is_floating_point:
return f32_pcm(wav)
else:
return i16_pcm(wav)
def encode_mp3(wav, path, samplerate=44100, bitrate=320, verbose=False):
"""Save given audio as mp3. This should work on all OSes."""
c, _ = wav.shape
wav = i16_pcm(wav)
encoder = lameenc.Encoder()
encoder.set_bit_rate(bitrate)
encoder.set_in_sample_rate(samplerate)
encoder.set_channels(c)
encoder.set_quality(2) # 2-highest, 7-fastest
if not verbose:
encoder.silence()
wav = wav.data.cpu()
wav = wav.transpose(0, 1).numpy()
mp3_data = encoder.encode(wav.tobytes())
mp3_data += encoder.flush()
with open(path, "wb") as f:
f.write(mp3_data)
def prevent_clip(wav, mode='rescale'):
"""
different strategies for avoiding raw clipping.
"""
if mode is None or mode == 'none':
return wav
assert wav.dtype.is_floating_point, "too late for clipping"
if mode == 'rescale':
wav = wav / max(1.01 * wav.abs().max(), 1)
elif mode == 'clamp':
wav = wav.clamp(-0.99, 0.99)
elif mode == 'tanh':
wav = torch.tanh(wav)
else:
raise ValueError(f"Invalid mode {mode}")
return wav
def save_audio(wav: torch.Tensor,
path: tp.Union[str, Path],
samplerate: int,
bitrate: int = 320,
clip: tp.Union[str] = 'rescale',
bits_per_sample: tp.Union[int] = 16,
as_float: bool = False):
"""Save audio file, automatically preventing clipping if necessary
based on the given `clip` strategy. If the path ends in `.mp3`, this
will save as mp3 with the given `bitrate`.
"""
wav = prevent_clip(wav, mode=clip)
path = Path(path)
suffix = path.suffix.lower()
if suffix == ".mp3":
encode_mp3(wav, path, samplerate, bitrate, verbose=True)
elif suffix == ".wav":
if as_float:
bits_per_sample = 32
encoding = 'PCM_F'
else:
encoding = 'PCM_S'
ta.save(str(path), wav, sample_rate=samplerate,
encoding=encoding, bits_per_sample=bits_per_sample)
elif suffix == ".flac":
ta.save(str(path), wav, sample_rate=samplerate, bits_per_sample=bits_per_sample)
else:
raise ValueError(f"Invalid suffix for path: {suffix}")
def load_track(track, audio_channels, samplerate):
errors = {}
wav = None
try:
wav = AudioFile(track).read(
streams=0,
samplerate=samplerate,
channels=audio_channels)
except sp.CalledProcessError:
errors['ffmpeg'] = 'FFmpeg could not read the file.'
if wav is None:
try:
wav, sr = ta.load(str(track))
except RuntimeError as err:
errors['torchaudio'] = err.args[0]
else:
wav = convert_audio(wav, sr, samplerate, audio_channels)
return wav, errors |