File size: 13,549 Bytes
258fd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import json
import torch
from tqdm import tqdm
from model_4rvq import PromptCondAudioDiffusion
from diffusers import DDIMScheduler, DDPMScheduler
import torchaudio
import librosa
import os
import math
import numpy as np
# from tools.get_mulan import get_mulan
from tools.get_1dvae_large import get_model
import tools.torch_tools as torch_tools
from safetensors.torch import load_file
from audio import AudioFile

class Tango:
    def __init__(self, \
        model_path, \
        layer_num=6, \
        rvq_num=1, \
        device="cuda:0"):
        
        self.sample_rate = 48000
        scheduler_name = "configs/scheduler/stable_diffusion_2.1_largenoise_sample.json"
        self.device = device

        self.vae = get_model()
        self.vae = self.vae.to(device)
        self.vae=self.vae.eval()
        self.layer_num = layer_num

        self.MAX_DURATION = 360
        main_config = {
            "num_channels":32,
            "unet_model_name":None,
            "unet_model_config_path":"configs/models/transformer2D_wocross_inch112_1x4_multi_large.json",
            "snr_gamma":None,
        }
        self.rvq_num = rvq_num
        # print("rvq_num: ", self.rvq_num)
        # exit()
        self.model = PromptCondAudioDiffusion(**main_config).to(device)
        if model_path.endswith(".safetensors"):
            main_weights = load_file(model_path)
        else:
            main_weights = torch.load(model_path, map_location=device)
        self.model.load_state_dict(main_weights, strict=False)
        print ("Successfully loaded checkpoint from:", model_path)
        
        self.model.eval()
        self.model.init_device_dtype(torch.device(device), torch.float32)
        print("scaling factor: ", self.model.normfeat.std)
        
        # self.scheduler = DDIMScheduler.from_pretrained( \
        #     scheduler_name, subfolder="scheduler")
        # self.scheduler = DDPMScheduler.from_pretrained( \
        #     scheduler_name, subfolder="scheduler")
        print("Successfully loaded inference scheduler from {}".format(scheduler_name))



    @torch.no_grad()
    @torch.autocast(device_type="cuda", dtype=torch.float32)
    def sound2code(self, orig_samples, batch_size=8):
        if(orig_samples.ndim == 2):
            audios = orig_samples.unsqueeze(0).to(self.device)
        elif(orig_samples.ndim == 3):
            audios = orig_samples.to(self.device)
        else:
            assert orig_samples.ndim in (2,3), orig_samples.shape
        audios = self.preprocess_audio(audios)
        audios = audios.squeeze(0)
        orig_length = audios.shape[-1]
        min_samples = int(40 * self.sample_rate)
        # 40秒对应10个token
        output_len = int(orig_length / float(self.sample_rate) * 25) + 1
        # print("output_len: ", output_len)

        while(audios.shape[-1] < min_samples):
            audios = torch.cat([audios, audios], -1)
        int_max_len=audios.shape[-1]//min_samples+1
        audios = torch.cat([audios, audios], -1)
        audios=audios[:,:int(int_max_len*(min_samples))]
        codes_list=[]

        audio_input = audios.reshape(2, -1, min_samples).permute(1, 0, 2).reshape(-1, 2, min_samples)

        for audio_inx in range(0, audio_input.shape[0], batch_size):
            # import pdb; pdb.set_trace()
            codes, _, spk_embeds = self.model.fetch_codes_batch((audio_input[audio_inx:audio_inx+batch_size]), additional_feats=[],layer=self.layer_num, rvq_num=self.rvq_num)
            # print("codes",codes[0].shape)

            codes_list.append(torch.cat(codes, 1))
            # print("codes_list",codes_list[0].shape)

        codes = torch.cat(codes_list, 0).permute(1,0,2).reshape(self.rvq_num, -1)[None] # B 3 T -> 3 B T
        codes=codes[:,:,:output_len]

        return codes

    @torch.no_grad()
    @torch.autocast(device_type="cuda", dtype=torch.float32)
    def sound2code_ds(self, orig_samples, ds, batch_size=6):
        if(orig_samples.ndim == 2):
            audios = orig_samples.unsqueeze(0).to(self.device)
        elif(orig_samples.ndim == 3):
            audios = orig_samples.to(self.device)
        else:
            assert orig_samples.ndim in (2,3), orig_samples.shape
        audios = self.preprocess_audio(audios)
        audios = audios.squeeze(0)
        orig_length = audios.shape[-1]
        min_samples = int(40 * self.sample_rate)
        # 40秒对应10个token
        output_len = int(orig_length / float(self.sample_rate) * 25) + 1
        # print("output_len: ", output_len)

        while(audios.shape[-1] < min_samples):
            audios = torch.cat([audios, audios], -1)
        int_max_len=audios.shape[-1]//min_samples+1
        audios = torch.cat([audios, audios], -1)
        audios=audios[:,:int(int_max_len*(min_samples))]
        codes_list=[]

        audio_input = audios.reshape(2, -1, min_samples).permute(1, 0, 2).reshape(-1, 2, min_samples)

        for audio_inx in range(0, audio_input.shape[0], batch_size):
            # import pdb; pdb.set_trace()
            codes, _, spk_embeds = self.model.fetch_codes_batch_ds((audio_input[audio_inx:audio_inx+batch_size]), additional_feats=[],layer=self.layer_num, rvq_num=self.rvq_num, ds=ds)
            # print("codes",codes[0].shape)

            codes_list.append(torch.cat(codes, 1))
            # print("codes_list",codes_list[0].shape)

        codes = torch.cat(codes_list, 0).permute(1,0,2).reshape(self.rvq_num, -1)[None] # B 3 T -> 3 B T
        codes=codes[:,:,:output_len]

        return codes

    @torch.no_grad()
    def code2sound(self, codes, prompt=None, duration=40, guidance_scale=1.5, num_steps=20, disable_progress=False):
        codes = codes.to(self.device)

        min_samples = duration * 25 # 40ms per frame
        hop_samples = min_samples // 4 * 3
        ovlp_samples = min_samples - hop_samples
        hop_frames = hop_samples
        ovlp_frames = ovlp_samples
        first_latent = torch.randn(codes.shape[0], min_samples, 64).to(self.device)
        first_latent_length = 0
        first_latent_codes_length = 0

        if(isinstance(prompt, torch.Tensor)):
            # prepare prompt
            prompt = prompt.to(self.device)
            if(prompt.ndim == 3):
                assert prompt.shape[0] == 1, prompt.shape
                prompt = prompt[0]
            elif(prompt.ndim == 1):
                prompt = prompt.unsqueeze(0).repeat(2,1)
            elif(prompt.ndim == 2):
                if(prompt.shape[0] == 1):
                    prompt = prompt.repeat(2,1)

            if(prompt.shape[-1] < int(30 * self.sample_rate)):
                # if less than 30s, just choose the first 10s
                prompt = prompt[:,:int(10*self.sample_rate)] # limit max length to 10.24
            else:
                # else choose from 20.48s which might includes verse or chorus
                prompt = prompt[:,int(20*self.sample_rate):int(30*self.sample_rate)] # limit max length to 10.24
            
            true_latent = self.vae.encode_audio(prompt).permute(0,2,1)
            # print("true_latent.shape", true_latent.shape)
            # print("first_latent.shape", first_latent.shape)
            #true_latent.shape torch.Size([1, 250, 64])
            # first_latent.shape torch.Size([1, 1000, 64])
            
            first_latent[:,0:true_latent.shape[1],:] = true_latent
            first_latent_length = true_latent.shape[1]
            first_latent_codes = self.sound2code(prompt)
            first_latent_codes_length = first_latent_codes.shape[-1]
            codes = torch.cat([first_latent_codes, codes], -1)

        codes_len= codes.shape[-1]
        target_len = int((codes_len - first_latent_codes_length) / 100 * 4 * self.sample_rate)
        # target_len = int(codes_len / 100 * 4 * self.sample_rate)
        # code repeat
        if(codes_len < min_samples):
            while(codes.shape[-1] < min_samples):
                codes = torch.cat([codes, codes], -1)
            codes = codes[:,:,0:min_samples]
        codes_len = codes.shape[-1]
        if((codes_len - ovlp_samples) % hop_samples > 0):
            len_codes=math.ceil((codes_len - ovlp_samples) / float(hop_samples)) * hop_samples + ovlp_samples
            while(codes.shape[-1] < len_codes):
                codes = torch.cat([codes, codes], -1)
            codes = codes[:,:,0:len_codes]
        latent_length = min_samples
        latent_list = []
        spk_embeds = torch.zeros([1, 32, 1, 32], device=codes.device)
        with torch.autocast(device_type="cuda", dtype=torch.float16):
            for sinx in range(0, codes.shape[-1]-hop_samples, hop_samples):
                codes_input=[]
                codes_input.append(codes[:,:,sinx:sinx+min_samples])
                if(sinx == 0):
                    # print("Processing {} to {}".format(sinx/self.sample_rate, (sinx + min_samples)/self.sample_rate))
                    incontext_length = first_latent_length
                    latents = self.model.inference_codes(codes_input, spk_embeds, first_latent, latent_length, incontext_length=incontext_length, additional_feats=[], guidance_scale=1.5, num_steps = num_steps, disable_progress=disable_progress, scenario='other_seg')
                    latent_list.append(latents)
                else:
                    # print("Processing {} to {}".format(sinx/self.sample_rate, (sinx + min_samples)/self.sample_rate))
                    true_latent = latent_list[-1][:,:,-ovlp_frames:].permute(0,2,1)
                    print("true_latent.shape", true_latent.shape)
                    len_add_to_1000 = 1000 - true_latent.shape[-2]
                    # print("len_add_to_1000", len_add_to_1000)
                    # exit()
                    incontext_length = true_latent.shape[-2]
                    true_latent = torch.cat([true_latent, torch.randn(true_latent.shape[0],  len_add_to_1000, true_latent.shape[-1]).to(self.device)], -2)
                    latents = self.model.inference_codes(codes_input, spk_embeds, true_latent, latent_length, incontext_length=incontext_length,  additional_feats=[], guidance_scale=1.5, num_steps = num_steps, disable_progress=disable_progress, scenario='other_seg')
                    latent_list.append(latents)

        latent_list = [l.float() for l in latent_list]
        latent_list[0] = latent_list[0][:,:,first_latent_length:]
        min_samples =  int(min_samples * self.sample_rate // 1000 * 40)
        hop_samples = int(hop_samples * self.sample_rate // 1000 * 40)
        ovlp_samples = min_samples - hop_samples
        with torch.no_grad():
            output = None
            for i in range(len(latent_list)):
                latent = latent_list[i]
                cur_output = self.vae.decode_audio(latent)[0].detach().cpu()

                if output is None:
                    output = cur_output
                else:
                    ov_win = torch.from_numpy(np.linspace(0, 1, ovlp_samples)[None, :])
                    ov_win = torch.cat([ov_win, 1 - ov_win], -1)
                    print("output.shape", output.shape)
                    print("ov_win.shape", ov_win.shape)
                    output[:, -ovlp_samples:] = output[:, -ovlp_samples:] * ov_win[:, -ovlp_samples:] + cur_output[:, 0:ovlp_samples] * ov_win[:, 0:ovlp_samples]
                    output = torch.cat([output, cur_output[:, ovlp_samples:]], -1)
            output = output[:, 0:target_len]
        return output

    @torch.no_grad()
    def preprocess_audio(self, input_audios, threshold=0.8):
        assert len(input_audios.shape) == 3, input_audios.shape
        nchan = input_audios.shape[1]
        input_audios = input_audios.reshape(input_audios.shape[0], -1)
        norm_value = torch.ones_like(input_audios[:,0])
        max_volume = input_audios.abs().max(dim=-1)[0]
        norm_value[max_volume>threshold] = max_volume[max_volume>threshold] / threshold
        return input_audios.reshape(input_audios.shape[0], nchan, -1)/norm_value.unsqueeze(-1).unsqueeze(-1)
    
    @torch.no_grad()
    def sound2sound(self, sound, prompt=None, steps=50, disable_progress=False):
        codes = self.sound2code(sound)
        # print(codes.shape)
        # exit()
        wave = self.code2sound(codes, prompt, guidance_scale=1.5, num_steps=steps, disable_progress=disable_progress)
        # print(fname, wave.shape)
        return wave
    
    def file2code(self, fname):
        try:
            orig_samples, fs = torchaudio.load(fname)
        except:
            af = AudioFile(fname)
            orig_samples = af.read()
            fs = af.samplerate()
            orig_samples = orig_samples[0]
        if(fs!=self.sample_rate):
            orig_samples = torchaudio.functional.resample(orig_samples, fs, self.sample_rate)
            fs = self.sample_rate
        if orig_samples.shape[0] == 1:
            orig_samples = torch.cat([orig_samples, orig_samples], 0)
        return self.sound2code(orig_samples)

    def file2code_ds(self, fname, ds):
        try:
            orig_samples, fs = torchaudio.load(fname)
        except:
            af = AudioFile(fname)
            orig_samples = af.read()
            fs = af.samplerate()
            orig_samples = orig_samples[0]
        if(fs!=self.sample_rate):
            orig_samples = torchaudio.functional.resample(orig_samples, fs, self.sample_rate)
            fs = self.sample_rate
        if orig_samples.shape[0] == 1:
            orig_samples = torch.cat([orig_samples, orig_samples], 0)
        return self.sound2code_ds(orig_samples, ds)