File size: 17,490 Bytes
258fd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
"""!
@author Yi Luo (oulyluo)
@copyright Tencent AI Lab
"""

from __future__ import print_function

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.utils.checkpoint import checkpoint_sequential
from thop import profile, clever_format

class RMVN(nn.Module):
    """
    Rescaled MVN.
    """
    def __init__(self, dimension, groups=1):
        super(RMVN, self).__init__()
        
        self.mean = nn.Parameter(torch.zeros(dimension))
        self.std = nn.Parameter(torch.ones(dimension))
        self.groups = groups
        self.eps = torch.finfo(torch.float32).eps

    def forward(self, input):
        # input size: (B, N, T)
        B, N, T = input.shape
        assert N % self.groups == 0

        input = input.view(B, self.groups, -1, T)
        input_norm = (input - input.mean(2).unsqueeze(2)) / (input.var(2).unsqueeze(2) + self.eps).sqrt()
        input_norm = input_norm.view(B, N, T) * self.std.view(1, -1, 1) + self.mean.view(1, -1, 1)

        return input_norm

class ConvActNorm1d(nn.Module):
    def __init__(self, in_channel, hidden_channel, kernel=7, causal=False):
        super(ConvActNorm1d, self).__init__()
        
        self.in_channel = in_channel
        self.kernel = kernel
        self.causal = causal
        if not causal:
            self.conv = nn.Sequential(nn.Conv1d(in_channel, in_channel, kernel, padding=(kernel-1)//2),
                                    RMVN(in_channel),
                                    nn.Conv1d(in_channel, hidden_channel*2, 1),
                                    nn.GLU(dim=1),
                                    nn.Conv1d(hidden_channel, in_channel, 1)
                                    )
        else:
            self.conv = nn.Sequential(nn.Conv1d(in_channel, in_channel, kernel, padding=kernel-1),
                                    RMVN(in_channel),
                                    nn.Conv1d(in_channel, hidden_channel*2, 1),
                                    nn.GLU(dim=1),
                                    nn.Conv1d(hidden_channel, in_channel, 1)
                                    )
        
    def forward(self, input):
        
        output = self.conv(input)
        if self.causal:
            output = output[...,:-self.kernel+1].contiguous()
        return input + output

class ICB(nn.Module):
    def __init__(self, in_channel, kernel=7, causal=False):
        super(ICB, self).__init__()
        
        self.blocks = nn.Sequential(ConvActNorm1d(in_channel, in_channel*4, kernel, causal=causal),
                                    ConvActNorm1d(in_channel, in_channel*4, kernel, causal=causal),
                                    ConvActNorm1d(in_channel, in_channel*4, kernel, causal=causal)
                                    )
        
    def forward(self, input):
        
        return self.blocks(input)
    
class ResRNN(nn.Module):
    def __init__(self, input_size, hidden_size, bidirectional=False):
        super(ResRNN, self).__init__()
        
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.eps = torch.finfo(torch.float32).eps
        
        self.norm = RMVN(input_size)
        self.rnn = nn.LSTM(input_size, hidden_size, 1, batch_first=True, bidirectional=bidirectional)

        self.proj = nn.Linear(hidden_size*(int(bidirectional)+1), input_size)

    def forward(self, input, use_head=1):
        # input shape: batch, dim, seq

        B, N, T = input.shape

        rnn_output, _ = self.rnn(self.norm(input).transpose(1,2).contiguous())

        output = self.proj(rnn_output.contiguous().view(-1, rnn_output.shape[2]))
        output = output.view(B, T, -1).transpose(1,2).contiguous()
        
        return input + output

class BSNet(nn.Module):
    def __init__(self, feature_dim, kernel=7, causal=False):
        super(BSNet, self).__init__()

        self.feature_dim = feature_dim

        self.seq_net = ICB(self.feature_dim, kernel=kernel, causal=causal)
        self.band_net = ResRNN(self.feature_dim, self.feature_dim*2, bidirectional=True)

    def forward(self, input):
        # input shape: B, nband, N, T

        B, nband, N, T = input.shape

        band_output = self.seq_net(input.view(B*nband, N, T)).view(B, nband, -1, T)

        # band comm
        band_output = band_output.permute(0,3,2,1).contiguous().view(B*T, -1, nband)
        output = self.band_net(band_output).view(B, T, -1, nband).permute(0,3,2,1).contiguous()

        return output.view(B, nband, N, T)
    
# https://github.com/bshall/VectorQuantizedVAE/blob/master/model.py
class VQEmbeddingEMA(nn.Module):
    def __init__(self, num_code, code_dim, decay=0.99, layer=0):
        super(VQEmbeddingEMA, self).__init__()

        self.num_code = num_code
        self.code_dim = code_dim
        self.decay = decay
        self.layer = layer
        self.stale_tolerance = 100
        self.eps = torch.finfo(torch.float32).eps

        embedding = torch.empty(num_code, code_dim).normal_() / ((layer+1) * code_dim)
        self.register_buffer("embedding", embedding)
        self.register_buffer("ema_weight", self.embedding.clone())
        self.register_buffer("ema_count", torch.zeros(self.num_code))
        self.register_buffer("stale_counter", torch.zeros(self.num_code))

    def forward(self, input):

        B, N, T = input.shape
        assert N == self.code_dim

        input_detach = input.detach().mT.contiguous().view(B*T, N)  # B*T, dim

        # distance
        eu_dis = input_detach.pow(2).sum(-1).unsqueeze(-1) + self.embedding.pow(2).sum(-1).unsqueeze(0)  # B*T, num_code
        eu_dis = eu_dis - 2 * input_detach.mm(self.embedding.T)  # B*T, num_code

        # best codes
        indices = torch.argmin(eu_dis, dim=-1)  # B*T
        quantized = torch.gather(self.embedding, 0, indices.unsqueeze(-1).expand(-1, self.code_dim))  # B*T, dim
        quantized = quantized.view(B, T, N).mT.contiguous()  # B, N, T

        # calculate perplexity
        encodings = F.one_hot(indices, self.num_code).float()  # B*T, num_code
        avg_probs = encodings.mean(0)  # num_code
        perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + self.eps), -1)).mean()
        indices = indices.view(B, T)

        if self.training:
            # EMA update for codebook
            
            self.ema_count = self.decay * self.ema_count + (1 - self.decay) * torch.sum(encodings, dim=0)  # num_code

            update_direction = encodings.T.mm(input_detach)  # num_code, dim
            self.ema_weight = self.decay * self.ema_weight + (1 - self.decay) * update_direction  # num_code, dim

            # Laplace smoothing on the counters
            # make sure the denominator will never be zero
            n = torch.sum(self.ema_count, dim=-1, keepdim=True)  # 1
            self.ema_count = (self.ema_count + self.eps) / (n + self.num_code * self.eps) * n  # num_code

            self.embedding = self.ema_weight / self.ema_count.unsqueeze(-1)

            # calculate code usage
            stale_codes = (encodings.sum(0) == 0).float()  # num_code
            self.stale_counter = self.stale_counter * stale_codes + stale_codes

            # random replace codes that haven't been used for a while
            replace_code = (self.stale_counter == self.stale_tolerance).float() # num_code
            if replace_code.sum(-1).max() > 0:
                random_input_idx = torch.randperm(input_detach.shape[0])
                random_input = input_detach[random_input_idx].view(input_detach.shape)
                if random_input.shape[0] < self.num_code:
                    random_input = torch.cat([random_input]*(self.num_code // random_input.shape[0] + 1), 0)
                random_input = random_input[:self.num_code].contiguous()  # num_code, dim

                self.embedding = self.embedding * (1 - replace_code).unsqueeze(-1) + random_input * replace_code.unsqueeze(-1)
                self.ema_weight = self.ema_weight * (1 - replace_code).unsqueeze(-1) + random_input * replace_code.unsqueeze(-1)
                self.ema_count = self.ema_count * (1 - replace_code)
                self.stale_counter = self.stale_counter * (1 - replace_code)

        return quantized, indices, perplexity

class RVQEmbedding(nn.Module):
    def __init__(self, code_dim, decay=0.99, bit=[10]):
        super(RVQEmbedding, self).__init__()

        self.code_dim = code_dim
        self.decay = decay
        self.eps = torch.finfo(torch.float32).eps

        self.VQEmbedding = nn.ModuleList([])
        for i in range(len(bit)):
            self.VQEmbedding.append(VQEmbeddingEMA(2**bit[i], code_dim, decay, layer=i))

    def forward(self, input):
        quantized = []
        indices = []
        ppl = []

        residual_input = input
        for i in range(len(self.VQEmbedding)):
            this_quantized, this_indices, this_perplexity = self.VQEmbedding[i](residual_input)
            indices.append(this_indices)
            ppl.append(this_perplexity)
            residual_input = residual_input - this_quantized
            if i == 0:
                quantized.append(this_quantized)
            else:
                quantized.append(quantized[-1] + this_quantized)

        quantized = torch.stack(quantized, -1)
        indices = torch.stack(indices, -1)
        ppl = torch.stack(ppl, -1)
        latent_loss = 0
        for i in range(quantized.shape[-1]):
            latent_loss = latent_loss + F.mse_loss(input, quantized.detach()[...,i])

        return quantized, indices, ppl, latent_loss

class Codec(nn.Module):
    def __init__(self, nch=1, sr=44100, win=80, feature_dim=128, vae_dim=2, enc_layer=12, dec_layer=12, bit=[8]*5, causal=False):
        super(Codec, self).__init__()
        
        self.nch = nch
        self.sr = sr
        self.win = int(sr / 1000 * win)
        self.stride = self.win // 2
        self.enc_dim = self.win // 2 + 1
        self.feature_dim = feature_dim
        self.vae_dim = vae_dim
        self.bit = bit
        self.eps = torch.finfo(torch.float32).eps

        # 0-1k (50 hop), 1k-2k (100 hop), 2k-4k (250 hop), 4k-8k (500 hop), 8k-12k (1k hop), 12k-20k (2k hop), 20k-inf
        # 55 bands
        bandwidth_50 = int(np.floor(50 / (sr / 2.) * self.enc_dim))
        bandwidth_100 = int(np.floor(100 / (sr / 2.) * self.enc_dim))
        bandwidth_250 = int(np.floor(250 / (sr / 2.) * self.enc_dim))
        bandwidth_500 = int(np.floor(500 / (sr / 2.) * self.enc_dim))
        bandwidth_1k = int(np.floor(1000 / (sr / 2.) * self.enc_dim))
        bandwidth_2k = int(np.floor(2000 / (sr / 2.) * self.enc_dim))
        self.band_width = [bandwidth_50]*20
        self.band_width += [bandwidth_100]*10
        self.band_width += [bandwidth_250]*8
        self.band_width += [bandwidth_500]*8
        self.band_width += [bandwidth_1k]*4
        self.band_width += [bandwidth_2k]*4
        self.band_width.append(self.enc_dim - np.sum(self.band_width))
        self.nband = len(self.band_width)
        print(self.band_width, self.nband)

        self.VAE_BN = nn.ModuleList([])
        for i in range(self.nband):
            self.VAE_BN.append(nn.Sequential(RMVN((self.band_width[i]*2+1)*self.nch),
                                             nn.Conv1d(((self.band_width[i]*2+1)*self.nch), self.feature_dim, 1))
                          )

        self.VAE_encoder = []
        for _ in range(enc_layer):
            self.VAE_encoder.append(BSNet(self.feature_dim, kernel=7, causal=causal))
        self.VAE_encoder = nn.Sequential(*self.VAE_encoder)

        self.vae_FC = nn.Sequential(RMVN(self.nband*self.feature_dim, groups=self.nband),
                                    nn.Conv1d(self.nband*self.feature_dim, self.nband*self.vae_dim*2, 1, groups=self.nband)
                                   )
        self.codebook = RVQEmbedding(self.nband*self.vae_dim*2, bit=bit)
        self.vae_reshape = nn.Conv1d(self.nband*self.vae_dim, self.nband*self.feature_dim, 1, groups=self.nband)

        self.VAE_decoder = []
        for _ in range(dec_layer):
            self.VAE_decoder.append(BSNet(self.feature_dim, kernel=7, causal=causal))
        self.VAE_decoder = nn.Sequential(*self.VAE_decoder)
        
        self.VAE_output = nn.ModuleList([])
        for i in range(self.nband):
            self.VAE_output.append(nn.Sequential(RMVN(self.feature_dim), 
                                                 nn.Conv1d(self.feature_dim, self.band_width[i]*4*self.nch, 1), 
                                                 nn.GLU(dim=1))
                                  )
        
    def spec_band_split(self, input):

        B, nch, nsample = input.shape

        spec = torch.stft(input.view(B*nch, nsample).float(), n_fft=self.win, hop_length=self.stride, 
                          window=torch.hann_window(self.win).to(input.device), return_complex=True)

        subband_spec = []
        subband_spec_norm = []
        subband_power = []
        band_idx = 0
        for i in range(self.nband):
            this_spec = spec[:,band_idx:band_idx+self.band_width[i]]
            subband_spec.append(this_spec)  # B, BW, T
            subband_power.append((this_spec.abs().pow(2).sum(1) + self.eps).sqrt().unsqueeze(1))  # B, 1, T
            subband_spec_norm.append([this_spec.real / subband_power[-1], this_spec.imag / subband_power[-1]])  # B, BW, T
            band_idx += self.band_width[i]
        subband_power = torch.cat(subband_power, 1)  # B, nband, T

        return subband_spec, subband_spec_norm, subband_power

    def feature_extractor(self, input):
        
        _, subband_spec_norm, subband_power = self.spec_band_split(input)
        
        # normalization and bottleneck
        subband_feature = []
        for i in range(self.nband):
            concat_spec = torch.cat([subband_spec_norm[i][0], subband_spec_norm[i][1], torch.log(subband_power[:,i].unsqueeze(1))], 1)
            concat_spec = concat_spec.view(-1, (self.band_width[i]*2+1)*self.nch, concat_spec.shape[-1])
            subband_feature.append(self.VAE_BN[i](concat_spec.type(input.type())))
        subband_feature = torch.stack(subband_feature, 1)  # B, nband, N, T

        return subband_feature
    
    def vae_sample(self, input):

        B, nch, _ = input.shape

        subband_feature = self.feature_extractor(input)

        # encode
        enc_output = checkpoint_sequential(self.VAE_encoder, len(self.VAE_encoder), subband_feature)
        enc_output = self.vae_FC(enc_output.view(B, self.nband*self.feature_dim, -1)).view(B, self.nband, 2, self.vae_dim, -1)
        mu = enc_output[:,:,0].contiguous()
        logvar = enc_output[:,:,1].contiguous()

        # vae
        reparam_feature = mu + torch.randn_like(logvar) * torch.exp(0.5 * logvar)

        return reparam_feature.view(B, nch, self.nband, self.vae_dim, -1)
    
    def vae_decode(self, vae_feature):
        B = vae_feature.shape[0]
        dec_input = self.vae_reshape(vae_feature.contiguous().view(B, self.nband*self.vae_dim, -1))
        output = checkpoint_sequential(self.VAE_decoder, len(self.VAE_decoder), dec_input.view(B, self.nband, self.feature_dim, -1))
        
        est_spec = []
        for i in range(self.nband):
            this_RI = self.VAE_output[i](output[:,i]).view(B*self.nch, 2, self.band_width[i], -1)
            est_spec.append(torch.complex(this_RI[:,0].float(), this_RI[:,1].float()))
        est_spec = torch.cat(est_spec, 1)

        output = torch.istft(est_spec, n_fft=self.win, hop_length=self.stride, 
                            window=torch.hann_window(self.win).to(vae_feature.device)).view(B, self.nch, -1)
        
        return output.type(vae_feature.type())
        
    def forward(self, input):

        B, nch, nsample = input.shape
        assert nch == self.nch

        vae_feature = self.vae_sample(input)
        output = self.vae_decode(vae_feature).view(B, nch, -1)
        if(output.shape[-1] > nsample):
            output = output[:,:,0:nsample]
        elif(output.shape[-1] < nsample):
            output = torch.cat([output, torch.zeros(B, nch, nsample - output.shape[-1], device= output.device, dtype=output.dtype)],-1)

        return output

    def encode(self, input, do_sample=True):
        assert do_sample, do_sample
        B, nch, nsample = input.shape
        assert nch == self.nch

        vae_feature = self.vae_sample(input)
        return vae_feature

def get_bsrnnvae(ckpt):
    nch = 1
    model = Codec(nch = nch, \
        win = 100, \
        feature_dim = 128, \
        vae_dim = 2, \
        bit = [14]*5, \
        causal = True)
    weight = torch.load(ckpt, map_location='cpu')
    model.load_state_dict(weight)
    return model.eval()

if __name__ == '__main__':
    model = Codec(causal=True)
    x = torch.empty(1, 1, 44100).uniform_(-1, 1)

    s = 0
    for param in model.parameters():
        s += np.product(param.size())
    print('# of parameters: '+str(s/1e6)+" M")

    output = model(x)
    print(output.shape)

    macs, params = profile(model, inputs=(x,))
    macs, params = clever_format([macs, params], "%.3f")
    print(macs, params)

    import torchaudio
    model = get_bsrnnvae()
    inp, fs = torchaudio.load('769000.mp3')
    inp = inp[[0],:]
    if(fs!=44100):
        inp = torchaudio.functional.resample(inp, fs, 44100)
        fs = 44100
    inp = inp[:,0:30*44100]
    out = model(inp[None,:,:]).detach()
    torchaudio.save('out.flac', out[0], fs)