Spaces:
Running
on
L40S
Running
on
L40S
import json | |
import torch | |
from tqdm import tqdm | |
from model_1rvq import PromptCondAudioDiffusion | |
from diffusers import DDIMScheduler, DDPMScheduler | |
import torchaudio | |
import librosa | |
import os | |
import math | |
import numpy as np | |
from tools.get_1dvae_large import get_model | |
import tools.torch_tools as torch_tools | |
from safetensors.torch import load_file | |
class Tango: | |
def __init__(self, \ | |
model_path, \ | |
vae_config="", | |
vae_model="", | |
layer_num=6, \ | |
device="cuda:0"): | |
self.sample_rate = 48000 | |
scheduler_name = "configs/scheduler/stable_diffusion_2.1_largenoise_sample.json" | |
self.device = device | |
self.vae = get_model(vae_config, vae_model) | |
self.vae = self.vae.to(device) | |
self.vae=self.vae.eval() | |
self.layer_num = layer_num | |
self.MAX_DURATION = 360 | |
main_config = { | |
"num_channels":32, | |
"unet_model_name":None, | |
"unet_model_config_path":"configs/models/transformer2D_wocross_inch112_1x4_multi_large.json", | |
"snr_gamma":None, | |
} | |
self.model = PromptCondAudioDiffusion(**main_config).to(device) | |
if model_path.endswith(".safetensors"): | |
main_weights = load_file(model_path) | |
else: | |
main_weights = torch.load(model_path, map_location=device) | |
self.model.load_state_dict(main_weights, strict=False) | |
print ("Successfully loaded checkpoint from:", model_path) | |
self.model.eval() | |
self.model.init_device_dtype(torch.device(device), torch.float32) | |
print("scaling factor: ", self.model.normfeat.std) | |
# self.scheduler = DDIMScheduler.from_pretrained( \ | |
# scheduler_name, subfolder="scheduler") | |
# self.scheduler = DDPMScheduler.from_pretrained( \ | |
# scheduler_name, subfolder="scheduler") | |
# print("Successfully loaded inference scheduler from {}".format(scheduler_name)) | |
# def sound2sound(self, orig_samples, lyric, st_et, batch_size=1, duration=40.96, steps=200, disable_progress=False,scenario = "start_seg"): | |
# """ Genrate audio without condition. """ | |
# with torch.no_grad(): | |
# if(orig_samples.shape[-1]<int(duration*48000)+480): | |
# orig_samples = torch.cat([orig_samples, torch.zeros(orig_samples.shape[0], int(duration*48000+480)-orig_samples.shape[-1], \ | |
# dtype=orig_samples.dtype, device=orig_samples.device)], -1) | |
# orig_samples = orig_samples.to(self.device) | |
# saved_samples = orig_samples[:,0:40*48000].clamp(-1,1) | |
# orig_samples = orig_samples[:,0:40*48000].clamp(-1,1) | |
# max_volume = orig_samples.abs().max(dim=-1)[0] | |
# orig_samples = orig_samples/max_volume.unsqueeze(-1) | |
# print("orig_samples.shape", orig_samples.shape) | |
# latent_length = int((st_et[1] - st_et[0]) * 48000) // 1920 + 1 | |
# true_latents = self.vae.encode_audio(orig_samples).permute(0,2,1) | |
# print("true_latents.shape", true_latents.shape) | |
# latents = self.model.inference(orig_samples.repeat(batch_size, 1), [lyric, ]*batch_size, true_latents, latent_length, additional_feats=[], guidance_scale=1.5, num_steps = steps, disable_progress=disable_progress,layer=6, scenario = scenario) | |
# print("latents.shape", latents.shape) | |
# print("latent_length", latent_length) | |
# latents = latents[:,:,:latent_length] | |
# audio = self.vae.decode_audio(latents) | |
# print("audio.shape:",audio.shape) | |
# audio = torch.cat((audio, torch.zeros(audio.shape[0],audio.shape[1], 48000*40 - audio.shape[-1], dtype=audio.dtype, device=audio.device)), dim=-1) | |
# print("audio.shape:",audio.shape) | |
# # audio = audio.reshape(audio.shape[0]//2, 2, -1) | |
# # audio = torch.from_numpy(audio) | |
# if(saved_samples.shape[-1]<audio.shape[-1]): | |
# saved_samples = torch.cat([saved_samples, torch.zeros(saved_samples.shape[0], audio.shape[-1]-saved_samples.shape[-1], dtype=saved_samples.dtype, device=saved_samples.device)],-1) | |
# else: | |
# saved_samples = saved_samples[:,0:audio.shape[-1]] | |
# output = torch.cat([saved_samples.detach().cpu(),audio[0].detach().cpu()],0) | |
# return output | |
def sound2code(self, orig_samples, batch_size=3): | |
if(orig_samples.ndim == 2): | |
audios = orig_samples.unsqueeze(0).to(self.device) | |
elif(orig_samples.ndim == 3): | |
audios = orig_samples.to(self.device) | |
else: | |
assert orig_samples.ndim in (2,3), orig_samples.shape | |
audios = self.preprocess_audio(audios) | |
audios = audios.squeeze(0) | |
orig_length = audios.shape[-1] | |
min_samples = int(40 * self.sample_rate) | |
# 40秒对应10个token | |
output_len = int(orig_length / float(self.sample_rate) * 25) + 1 | |
print("output_len: ", output_len) | |
while(audios.shape[-1] < min_samples): | |
audios = torch.cat([audios, audios], -1) | |
int_max_len=audios.shape[-1]//min_samples+1 | |
audios = torch.cat([audios, audios], -1) | |
audios=audios[:,:int(int_max_len*(min_samples))] | |
codes_list=[] | |
audio_input = audios.reshape(2, -1, min_samples).permute(1, 0, 2).reshape(-1, 2, min_samples) | |
for audio_inx in range(0, audio_input.shape[0], batch_size): | |
# import pdb; pdb.set_trace() | |
codes, _, spk_embeds = self.model.fetch_codes_batch((audio_input[audio_inx:audio_inx+batch_size]), additional_feats=[],layer=self.layer_num) | |
codes_list.append(torch.cat(codes, 1)) | |
# print("codes_list",codes_list[0].shape) | |
codes = torch.cat(codes_list, 0).permute(1,0,2).reshape(1, -1)[None] # B 3 T -> 3 B T | |
codes=codes[:,:,:output_len] | |
return codes | |
def code2sound(self, codes, prompt=None, duration=40, guidance_scale=1.5, num_steps=20, disable_progress=False): | |
codes = codes.to(self.device) | |
min_samples = int(duration * 25) # 40ms per frame | |
hop_samples = min_samples // 4 * 3 | |
ovlp_samples = min_samples - hop_samples | |
hop_frames = hop_samples | |
ovlp_frames = ovlp_samples | |
first_latent = torch.randn(codes.shape[0], min_samples, 64).to(self.device) | |
first_latent_length = 0 | |
first_latent_codes_length = 0 | |
if(isinstance(prompt, torch.Tensor)): | |
# prepare prompt | |
prompt = prompt.to(self.device) | |
if(prompt.ndim == 3): | |
assert prompt.shape[0] == 1, prompt.shape | |
prompt = prompt[0] | |
elif(prompt.ndim == 1): | |
prompt = prompt.unsqueeze(0).repeat(2,1) | |
elif(prompt.ndim == 2): | |
if(prompt.shape[0] == 1): | |
prompt = prompt.repeat(2,1) | |
if(prompt.shape[-1] < int(30 * self.sample_rate)): | |
# if less than 30s, just choose the first 10s | |
prompt = prompt[:,:int(10*self.sample_rate)] # limit max length to 10.24 | |
else: | |
# else choose from 20.48s which might includes verse or chorus | |
prompt = prompt[:,int(20*self.sample_rate):int(30*self.sample_rate)] # limit max length to 10.24 | |
true_latent = self.vae.encode_audio(prompt).permute(0,2,1) | |
# print("true_latent.shape", true_latent.shape) | |
# print("first_latent.shape", first_latent.shape) | |
#true_latent.shape torch.Size([1, 250, 64]) | |
# first_latent.shape torch.Size([1, 1000, 64]) | |
first_latent[:,0:true_latent.shape[1],:] = true_latent | |
first_latent_length = true_latent.shape[1] | |
first_latent_codes = self.sound2code(prompt) | |
first_latent_codes_length = first_latent_codes.shape[-1] | |
codes = torch.cat([first_latent_codes, codes], -1) | |
codes_len= codes.shape[-1] | |
target_len = int((codes_len - first_latent_codes_length) / 100 * 4 * self.sample_rate) | |
# target_len = int(codes_len / 100 * 4 * self.sample_rate) | |
# code repeat | |
if(codes_len < min_samples): | |
while(codes.shape[-1] < min_samples): | |
codes = torch.cat([codes, codes], -1) | |
codes = codes[:,:,0:min_samples] | |
codes_len = codes.shape[-1] | |
if((codes_len - ovlp_samples) % hop_samples > 0): | |
len_codes=math.ceil((codes_len - ovlp_samples) / float(hop_samples)) * hop_samples + ovlp_samples | |
while(codes.shape[-1] < len_codes): | |
codes = torch.cat([codes, codes], -1) | |
codes = codes[:,:,0:len_codes] | |
latent_length = min_samples | |
latent_list = [] | |
spk_embeds = torch.zeros([1, 32, 1, 32], device=codes.device) | |
with torch.autocast(device_type="cuda", dtype=torch.float16): | |
for sinx in range(0, codes.shape[-1]-hop_samples, hop_samples): | |
codes_input=[] | |
codes_input.append(codes[:,:,sinx:sinx+min_samples]) | |
if(sinx == 0): | |
# print("Processing {} to {}".format(sinx/self.sample_rate, (sinx + min_samples)/self.sample_rate)) | |
incontext_length = first_latent_length | |
latents = self.model.inference_codes(codes_input, spk_embeds, first_latent, latent_length, incontext_length=incontext_length, additional_feats=[], guidance_scale=1.5, num_steps = num_steps, disable_progress=disable_progress, scenario='other_seg') | |
latent_list.append(latents) | |
else: | |
# print("Processing {} to {}".format(sinx/self.sample_rate, (sinx + min_samples)/self.sample_rate)) | |
true_latent = latent_list[-1][:,:,-ovlp_frames:].permute(0,2,1) | |
print("true_latent.shape", true_latent.shape) | |
len_add_to_1000 = min_samples - true_latent.shape[-2] | |
# print("len_add_to_1000", len_add_to_1000) | |
# exit() | |
incontext_length = true_latent.shape[-2] | |
true_latent = torch.cat([true_latent, torch.randn(true_latent.shape[0], len_add_to_1000, true_latent.shape[-1]).to(self.device)], -2) | |
latents = self.model.inference_codes(codes_input, spk_embeds, true_latent, latent_length, incontext_length=incontext_length, additional_feats=[], guidance_scale=1.5, num_steps = num_steps, disable_progress=disable_progress, scenario='other_seg') | |
latent_list.append(latents) | |
latent_list = [l.float() for l in latent_list] | |
latent_list[0] = latent_list[0][:,:,first_latent_length:] | |
min_samples = int(min_samples * self.sample_rate // 1000 * 40) | |
hop_samples = int(hop_samples * self.sample_rate // 1000 * 40) | |
ovlp_samples = min_samples - hop_samples | |
with torch.no_grad(): | |
output = None | |
for i in range(len(latent_list)): | |
latent = latent_list[i] | |
cur_output = self.vae.decode_audio(latent)[0].detach().cpu() | |
if output is None: | |
output = cur_output | |
else: | |
ov_win = torch.from_numpy(np.linspace(0, 1, ovlp_samples)[None, :]) | |
ov_win = torch.cat([ov_win, 1 - ov_win], -1) | |
print("output.shape", output.shape) | |
print("ov_win.shape", ov_win.shape) | |
output[:, -ovlp_samples:] = output[:, -ovlp_samples:] * ov_win[:, -ovlp_samples:] + cur_output[:, 0:ovlp_samples] * ov_win[:, 0:ovlp_samples] | |
output = torch.cat([output, cur_output[:, ovlp_samples:]], -1) | |
output = output[:, 0:target_len] | |
return output | |
def preprocess_audio(self, input_audios, threshold=0.8): | |
assert len(input_audios.shape) == 3, input_audios.shape | |
nchan = input_audios.shape[1] | |
input_audios = input_audios.reshape(input_audios.shape[0], -1) | |
norm_value = torch.ones_like(input_audios[:,0]) | |
max_volume = input_audios.abs().max(dim=-1)[0] | |
norm_value[max_volume>threshold] = max_volume[max_volume>threshold] / threshold | |
return input_audios.reshape(input_audios.shape[0], nchan, -1)/norm_value.unsqueeze(-1).unsqueeze(-1) | |
def sound2sound(self, sound, prompt=None, steps=50, disable_progress=False): | |
codes = self.sound2code(sound) | |
# print(codes.shape) | |
wave = self.code2sound(codes, prompt, guidance_scale=1.5, num_steps=steps, disable_progress=disable_progress) | |
# print(fname, wave.shape) | |
return wave | |
def sound2sound_vae(self, sound, prompt=None, steps=50, disable_progress=False): | |
min_samples = int(40 * 25) # 40ms per frame | |
hop_samples = min_samples // 4 * 3 | |
ovlp_samples = min_samples - hop_samples | |
dur = 20 | |
latent_list = [] | |
for i in range(0, sound.shape[-1], dur*48000): | |
if(i+dur*2*48000 > sound.shape[-1]): | |
latent = tango.vae.encode_audio(sound.cuda()[None,:,i:]) | |
break | |
else: | |
latent = tango.vae.encode_audio(sound.cuda()[None,:,i:i+dur*48000]) | |
latent_list.append(latent) | |
output = None | |
for i in range(len(latent_list)): | |
print(i) | |
latent = latent_list[i] | |
cur_output = self.vae.decode_audio(latent)[0].detach().cpu() | |
if output is None: | |
output = cur_output | |
else: | |
output = torch.cat([output, cur_output], -1) | |
return output | |