Spaces:
Running
on
L40S
Running
on
L40S
import json | |
import torch | |
from tqdm import tqdm | |
from model_septoken import PromptCondAudioDiffusion | |
from diffusers import DDIMScheduler, DDPMScheduler | |
import torchaudio | |
import librosa | |
import os | |
import math | |
import numpy as np | |
# from tools.get_mulan import get_mulan | |
from tools.get_1dvae_large import get_model | |
import tools.torch_tools as torch_tools | |
from safetensors.torch import load_file | |
from third_party.demucs.models.pretrained import get_model_from_yaml | |
from filelock import FileLock | |
import kaldiio | |
# os.path.join(args.model_dir, "htdemucs.pth"), os.path.join(args.model_dir, "htdemucs.yaml") | |
class Separator: | |
def __init__(self, dm_model_path='demucs/ckpt/htdemucs.pth', dm_config_path='demucs/ckpt/htdemucs.yaml', gpu_id=0) -> None: | |
if torch.cuda.is_available() and gpu_id < torch.cuda.device_count(): | |
self.device = torch.device(f"cuda:{gpu_id}") | |
else: | |
self.device = torch.device("cpu") | |
self.demucs_model = self.init_demucs_model(dm_model_path, dm_config_path) | |
def init_demucs_model(self, model_path, config_path): | |
model = get_model_from_yaml(config_path, model_path) | |
model.to(self.device) | |
model.eval() | |
return model | |
def load_audio(self, f): | |
a, fs = torchaudio.load(f) | |
if (fs != 48000): | |
a = torchaudio.functional.resample(a, fs, 48000) | |
# if a.shape[-1] >= 48000*10: | |
# a = a[..., :48000*10] | |
# else: | |
# a = torch.cat([a, a], -1) | |
# return a[:, 0:48000*10] | |
return a | |
def run(self, audio_path, output_dir='demucs/test_output', ext=".flac"): | |
name, _ = os.path.splitext(os.path.split(audio_path)[-1]) | |
output_paths = [] | |
# lock_path = os.path.join(output_dir, f"{name}.lock") | |
# with FileLock(lock_path): # 加一个避免多卡访问时死锁 | |
for stem in self.demucs_model.sources: | |
output_path = os.path.join(output_dir, f"{name}_{stem}{ext}") | |
if os.path.exists(output_path): | |
output_paths.append(output_path) | |
if len(output_paths) == 1: # 4 | |
# drums_path, bass_path, other_path, vocal_path = output_paths | |
vocal_path = output_paths[0] | |
else: | |
lock_path = os.path.join(output_dir, f"{name}_separate.lock") | |
with FileLock(lock_path): | |
drums_path, bass_path, other_path, vocal_path = self.demucs_model.separate(audio_path, output_dir, device=self.device) | |
full_audio = self.load_audio(audio_path) | |
vocal_audio = self.load_audio(vocal_path) | |
minlen = min(full_audio.shape[-1], vocal_audio.shape[-1]) | |
# bgm_audio = full_audio[:, 0:minlen] - vocal_audio[:, 0:minlen] | |
bgm_audio = self.load_audio(drums_path) + self.load_audio(bass_path) + self.load_audio(other_path) | |
for path in [drums_path, bass_path, other_path, vocal_path]: | |
os.remove(path) | |
return full_audio, vocal_audio, bgm_audio | |
class Tango: | |
def __init__(self, \ | |
model_path, \ | |
vae_config, | |
vae_model, | |
layer_vocal=7,\ | |
layer_bgm=3,\ | |
device="cuda:0"): | |
self.sample_rate = 48000 | |
scheduler_name = "configs/scheduler/stable_diffusion_2.1_largenoise_sample.json" | |
self.device = device | |
self.vae = get_model(vae_config, vae_model) | |
self.vae = self.vae.to(device) | |
self.vae=self.vae.eval() | |
self.layer_vocal=layer_vocal | |
self.layer_bgm=layer_bgm | |
self.MAX_DURATION = 360 | |
main_config = { | |
"num_channels":32, | |
"unet_model_name":None, | |
"unet_model_config_path":"configs/models/transformer2D_wocross_inch112_1x4_multi_large.json", | |
"snr_gamma":None, | |
} | |
self.model = PromptCondAudioDiffusion(**main_config).to(device) | |
if model_path.endswith(".safetensors"): | |
main_weights = load_file(model_path) | |
else: | |
main_weights = torch.load(model_path, map_location=device) | |
self.model.load_state_dict(main_weights, strict=False) | |
print ("Successfully loaded checkpoint from:", model_path) | |
self.model.eval() | |
self.model.init_device_dtype(torch.device(device), torch.float32) | |
print("scaling factor: ", self.model.normfeat.std) | |
# self.scheduler = DDIMScheduler.from_pretrained( \ | |
# scheduler_name, subfolder="scheduler") | |
# self.scheduler = DDPMScheduler.from_pretrained( \ | |
# scheduler_name, subfolder="scheduler") | |
print("Successfully loaded inference scheduler from {}".format(scheduler_name)) | |
def sound2code(self, orig_vocal, orig_bgm, batch_size=8): | |
if(orig_vocal.ndim == 2): | |
audios_vocal = orig_vocal.unsqueeze(0).to(self.device) | |
elif(orig_vocal.ndim == 3): | |
audios_vocal = orig_vocal.to(self.device) | |
else: | |
assert orig_vocal.ndim in (2,3), orig_vocal.shape | |
if(orig_bgm.ndim == 2): | |
audios_bgm = orig_bgm.unsqueeze(0).to(self.device) | |
elif(orig_bgm.ndim == 3): | |
audios_bgm = orig_bgm.to(self.device) | |
else: | |
assert orig_bgm.ndim in (2,3), orig_bgm.shape | |
audios_vocal = self.preprocess_audio(audios_vocal) | |
audios_vocal = audios_vocal.squeeze(0) | |
audios_bgm = self.preprocess_audio(audios_bgm) | |
audios_bgm = audios_bgm.squeeze(0) | |
if audios_vocal.shape[-1] > audios_bgm.shape[-1]: | |
audios_vocal = audios_vocal[:,:audios_bgm.shape[-1]] | |
else: | |
audios_bgm = audios_bgm[:,:audios_vocal.shape[-1]] | |
orig_length = audios_vocal.shape[-1] | |
min_samples = int(40 * self.sample_rate) | |
# 40秒对应10个token | |
output_len = int(orig_length / float(self.sample_rate) * 25) + 1 | |
while(audios_vocal.shape[-1] < min_samples): | |
audios_vocal = torch.cat([audios_vocal, audios_vocal], -1) | |
audios_bgm = torch.cat([audios_bgm, audios_bgm], -1) | |
int_max_len=audios_vocal.shape[-1]//min_samples+1 | |
audios_vocal = torch.cat([audios_vocal, audios_vocal], -1) | |
audios_bgm = torch.cat([audios_bgm, audios_bgm], -1) | |
audios_vocal=audios_vocal[:,:int(int_max_len*(min_samples))] | |
audios_bgm=audios_bgm[:,:int(int_max_len*(min_samples))] | |
codes_vocal_list=[] | |
codes_bgm_list=[] | |
audio_vocal_input = audios_vocal.reshape(2, -1, min_samples).permute(1, 0, 2).reshape(-1, 2, min_samples) | |
audio_bgm_input = audios_bgm.reshape(2, -1, min_samples).permute(1, 0, 2).reshape(-1, 2, min_samples) | |
for audio_inx in range(0, audio_vocal_input.shape[0], batch_size): | |
[codes_vocal,codes_bgm], _, spk_embeds = self.model.fetch_codes_batch((audio_vocal_input[audio_inx:audio_inx+batch_size]), (audio_bgm_input[audio_inx:audio_inx+batch_size]), additional_feats=[],layer_vocal=self.layer_vocal,layer_bgm=self.layer_bgm) | |
codes_vocal_list.append(codes_vocal) | |
codes_bgm_list.append(codes_bgm) | |
codes_vocal = torch.cat(codes_vocal_list, 0).permute(1,0,2).reshape(1, -1)[None] | |
codes_bgm = torch.cat(codes_bgm_list, 0).permute(1,0,2).reshape(1, -1)[None] | |
codes_vocal=codes_vocal[:,:,:output_len] | |
codes_bgm=codes_bgm[:,:,:output_len] | |
return codes_vocal, codes_bgm | |
def code2sound(self, codes, prompt_vocal=None, prompt_bgm=None, duration=40, guidance_scale=1.5, num_steps=20, disable_progress=False): | |
codes_vocal,codes_bgm = codes | |
codes_vocal = codes_vocal.to(self.device) | |
codes_bgm = codes_bgm.to(self.device) | |
min_samples = duration * 25 # 40ms per frame | |
hop_samples = min_samples // 4 * 3 | |
ovlp_samples = min_samples - hop_samples | |
hop_frames = hop_samples | |
ovlp_frames = ovlp_samples | |
first_latent = torch.randn(codes_vocal.shape[0], min_samples, 64).to(self.device) | |
first_latent_length = 0 | |
first_latent_codes_length = 0 | |
if(isinstance(prompt_vocal, torch.Tensor)): | |
# prepare prompt | |
prompt_vocal = prompt_vocal.to(self.device) | |
prompt_bgm = prompt_bgm.to(self.device) | |
if(prompt_vocal.ndim == 3): | |
assert prompt_vocal.shape[0] == 1, prompt_vocal.shape | |
prompt_vocal = prompt_vocal[0] | |
prompt_bgm = prompt_bgm[0] | |
elif(prompt_vocal.ndim == 1): | |
prompt_vocal = prompt_vocal.unsqueeze(0).repeat(2,1) | |
prompt_bgm = prompt_bgm.unsqueeze(0).repeat(2,1) | |
elif(prompt_vocal.ndim == 2): | |
if(prompt_vocal.shape[0] == 1): | |
prompt_vocal = prompt_vocal.repeat(2,1) | |
prompt_bgm = prompt_bgm.repeat(2,1) | |
if(prompt_vocal.shape[-1] < int(30 * self.sample_rate)): | |
# if less than 30s, just choose the first 10s | |
prompt_vocal = prompt_vocal[:,:int(10*self.sample_rate)] # limit max length to 10.24 | |
prompt_bgm = prompt_bgm[:,:int(10*self.sample_rate)] # limit max length to 10.24 | |
else: | |
# else choose from 20.48s which might includes verse or chorus | |
prompt_vocal = prompt_vocal[:,int(20*self.sample_rate):int(30*self.sample_rate)] # limit max length to 10.24 | |
prompt_bgm = prompt_bgm[:,int(20*self.sample_rate):int(30*self.sample_rate)] # limit max length to 10.24 | |
true_latent = self.vae.encode_audio(prompt_vocal+prompt_bgm).permute(0,2,1) | |
first_latent[:,0:true_latent.shape[1],:] = true_latent | |
first_latent_length = true_latent.shape[1] | |
first_latent_codes = self.sound2code(prompt_vocal, prompt_bgm) | |
first_latent_codes_vocal = first_latent_codes[0] | |
first_latent_codes_bgm = first_latent_codes[1] | |
first_latent_codes_length = first_latent_codes_vocal.shape[-1] | |
codes_vocal = torch.cat([first_latent_codes_vocal, codes_vocal], -1) | |
codes_bgm = torch.cat([first_latent_codes_bgm, codes_bgm], -1) | |
codes_len= codes_vocal.shape[-1] | |
target_len = int((codes_len - first_latent_codes_length) / 100 * 4 * self.sample_rate) | |
# target_len = int(codes_len / 100 * 4 * self.sample_rate) | |
# code repeat | |
if(codes_len < min_samples): | |
while(codes_vocal.shape[-1] < min_samples): | |
codes_vocal = torch.cat([codes_vocal, codes_vocal], -1) | |
codes_bgm = torch.cat([codes_bgm, codes_bgm], -1) | |
codes_vocal = codes_vocal[:,:,0:min_samples] | |
codes_bgm = codes_bgm[:,:,0:min_samples] | |
codes_len = codes_vocal.shape[-1] | |
if((codes_len - ovlp_samples) % hop_samples > 0): | |
len_codes=math.ceil((codes_len - ovlp_samples) / float(hop_samples)) * hop_samples + ovlp_samples | |
while(codes_vocal.shape[-1] < len_codes): | |
codes_vocal = torch.cat([codes_vocal, codes_vocal], -1) | |
codes_bgm = torch.cat([codes_bgm, codes_bgm], -1) | |
codes_vocal = codes_vocal[:,:,0:len_codes] | |
codes_bgm = codes_bgm[:,:,0:len_codes] | |
latent_length = min_samples | |
latent_list = [] | |
spk_embeds = torch.zeros([1, 32, 1, 32], device=codes_vocal.device) | |
with torch.autocast(device_type="cuda", dtype=torch.float16): | |
for sinx in range(0, codes_vocal.shape[-1]-hop_samples, hop_samples): | |
codes_vocal_input=codes_vocal[:,:,sinx:sinx+min_samples] | |
codes_bgm_input=codes_bgm[:,:,sinx:sinx+min_samples] | |
if(sinx == 0): | |
incontext_length = first_latent_length | |
latents = self.model.inference_codes([codes_vocal_input,codes_bgm_input], spk_embeds, first_latent, latent_length, incontext_length=incontext_length, additional_feats=[], guidance_scale=1.5, num_steps = num_steps, disable_progress=disable_progress, scenario='other_seg') | |
latent_list.append(latents) | |
else: | |
true_latent = latent_list[-1][:,:,-ovlp_frames:].permute(0,2,1) | |
len_add_to_1000 = min_samples - true_latent.shape[-2] | |
incontext_length = true_latent.shape[-2] | |
true_latent = torch.cat([true_latent, torch.randn(true_latent.shape[0], len_add_to_1000, true_latent.shape[-1]).to(self.device)], -2) | |
latents = self.model.inference_codes([codes_vocal_input,codes_bgm_input], spk_embeds, true_latent, latent_length, incontext_length=incontext_length, additional_feats=[], guidance_scale=1.5, num_steps = num_steps, disable_progress=disable_progress, scenario='other_seg') | |
latent_list.append(latents) | |
latent_list = [l.float() for l in latent_list] | |
latent_list[0] = latent_list[0][:,:,first_latent_length:] | |
min_samples = int(min_samples * self.sample_rate // 1000 * 40) | |
hop_samples = int(hop_samples * self.sample_rate // 1000 * 40) | |
ovlp_samples = min_samples - hop_samples | |
with torch.no_grad(): | |
output = None | |
for i in range(len(latent_list)): | |
latent = latent_list[i] | |
cur_output = self.vae.decode_audio(latent)[0].detach().cpu() | |
if output is None: | |
output = cur_output | |
else: | |
ov_win = torch.from_numpy(np.linspace(0, 1, ovlp_samples)[None, :]) | |
ov_win = torch.cat([ov_win, 1 - ov_win], -1) | |
output[:, -ovlp_samples:] = output[:, -ovlp_samples:] * ov_win[:, -ovlp_samples:] + cur_output[:, 0:ovlp_samples] * ov_win[:, 0:ovlp_samples] | |
output = torch.cat([output, cur_output[:, ovlp_samples:]], -1) | |
output = output[:, 0:target_len] | |
return output | |
def preprocess_audio(self, input_audios_vocal, threshold=0.8): | |
assert len(input_audios_vocal.shape) == 3, input_audios_vocal.shape | |
nchan = input_audios_vocal.shape[1] | |
input_audios_vocal = input_audios_vocal.reshape(input_audios_vocal.shape[0], -1) | |
norm_value = torch.ones_like(input_audios_vocal[:,0]) | |
max_volume = input_audios_vocal.abs().max(dim=-1)[0] | |
norm_value[max_volume>threshold] = max_volume[max_volume>threshold] / threshold | |
return input_audios_vocal.reshape(input_audios_vocal.shape[0], nchan, -1)/norm_value.unsqueeze(-1).unsqueeze(-1) | |
def sound2sound(self, orig_vocal,orig_bgm, prompt_vocal=None,prompt_bgm=None, steps=50, disable_progress=False): | |
codes_vocal, codes_bgm = self.sound2code(orig_vocal,orig_bgm) | |
codes=[codes_vocal, codes_bgm] | |
wave = self.code2sound(codes, prompt_vocal,prompt_bgm, guidance_scale=1.5, num_steps=steps, disable_progress=disable_progress) | |
return wave | |