Spaces:
Running
on
L40S
Running
on
L40S
""" | |
Main model for using CodecLM. This will combine all the required components | |
and provide easy access to the generation API. | |
""" | |
import typing as tp | |
import warnings | |
import torch | |
from codeclm.tokenizer.audio_tokenizer import AudioTokenizer | |
from .lm_levo import LmModel | |
from ..modules.conditioners import ConditioningAttributes, AudioCondition | |
from ..utils.autocast import TorchAutocast | |
import torch | |
from torch.nn import functional as F | |
import torchaudio | |
# from optim.ema import EMA | |
MelodyList = tp.List[tp.Optional[torch.Tensor]] | |
MelodyType = tp.Union[torch.Tensor, MelodyList] | |
class CodecLM: | |
"""CodecLM main model with convenient generation API. | |
Args: | |
name (str): name of the model. | |
compression_model (CompressionModel): Compression model | |
used to map audio to invertible discrete representations. | |
lm (LMModel): Language model over discrete representations. | |
max_duration (float, optional): maximum duration the model can produce, | |
otherwise, inferred from the training params. | |
""" | |
def __init__(self, name: str, audiotokenizer: AudioTokenizer, lm: LmModel, | |
max_duration: tp.Optional[float] = None, seperate_tokenizer: AudioTokenizer = None): | |
self.name = name | |
self.audiotokenizer = audiotokenizer | |
self.lm = lm | |
self.seperate_tokenizer = seperate_tokenizer | |
# import pdb; pdb.set_trace() | |
if max_duration is None: | |
if hasattr(lm, 'cfg'): | |
max_duration = lm.cfg.dataset.segment_duration # type: ignore | |
else: | |
raise ValueError("You must provide max_duration when building directly CodecLM") | |
assert max_duration is not None | |
self.max_duration: float = max_duration | |
self.device = next(iter(lm.parameters())).device | |
self.generation_params: dict = {} | |
# self.set_generation_params(duration=15) # 15 seconds by default | |
self.set_generation_params(duration=15, extend_stride=self.max_duration // 2) | |
self._progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None | |
if self.device.type == 'cpu': | |
self.autocast = TorchAutocast(enabled=False) | |
else: | |
self.autocast = TorchAutocast(enabled=False) | |
def frame_rate(self) -> float: | |
"""Roughly the number of AR steps per seconds.""" | |
return self.audiotokenizer.frame_rate | |
def sample_rate(self) -> int: | |
"""Sample rate of the generated audio.""" | |
return self.audiotokenizer.sample_rate | |
def audio_channels(self) -> int: | |
"""Audio channels of the generated audio.""" | |
return self.audiotokenizer.channels | |
def set_generation_params(self, use_sampling: bool = True, top_k: int = 250, | |
top_p: float = 0.0, temperature: float = 1.0, | |
duration: float = 30.0, cfg_coef: float = 3.0, | |
extend_stride: float = 18, record_tokens: bool = False, | |
record_window: int = 50): | |
"""Set the generation parameters for CodecLM. | |
Args: | |
use_sampling (bool, optional): Use sampling if True, else do argmax decoding. Defaults to True. | |
top_k (int, optional): top_k used for sampling. Defaults to 250. | |
top_p (float, optional): top_p used for sampling, when set to 0 top_k is used. Defaults to 0.0. | |
temperature (float, optional): Softmax temperature parameter. Defaults to 1.0. | |
duration (float, optional): Duration of the generated waveform. Defaults to 30.0. | |
cfg_coef (float, optional): Coefficient used for classifier free guidance. Defaults to 3.0. | |
two_step_cfg (bool, optional): If True, performs 2 forward for Classifier Free Guidance, | |
instead of batching together the two. This has some impact on how things | |
are padded but seems to have little impact in practice. | |
extend_stride: when doing extended generation (i.e. more than 30 seconds), by how much | |
should we extend the audio each time. Larger values will mean less context is | |
preserved, and shorter value will require extra computations. | |
""" | |
assert extend_stride <= self.max_duration, "Cannot stride by more than max generation duration." | |
self.extend_stride = extend_stride | |
self.duration = duration | |
self.generation_params = { | |
'use_sampling': use_sampling, | |
'temp': temperature, | |
'top_k': top_k, | |
'top_p': top_p, | |
'cfg_coef': cfg_coef, | |
'record_tokens': record_tokens, | |
'record_window': record_window, | |
} | |
def set_custom_progress_callback(self, progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None): | |
"""Override the default progress callback.""" | |
self._progress_callback = progress_callback | |
# Inference | |
def generate(self, lyrics: tp.List[str], | |
descriptions: tp.List[str], | |
melody_wavs: torch.Tensor = None, | |
melody_is_wav: bool = True, | |
vocal_wavs: torch.Tensor = None, | |
bgm_wavs: torch.Tensor = None, | |
return_tokens: bool = False, | |
) -> tp.Union[torch.Tensor, tp.Tuple[torch.Tensor, torch.Tensor]]: | |
"""Generate samples conditioned on text and melody. | |
Args: | |
descriptions (list of str): A list of strings used as text conditioning. | |
melody_wavs: (torch.Tensor or list of Tensor): A batch of waveforms used as | |
melody conditioning. Should have shape [B, C, T] with B matching the description length, | |
C=1 or 2. It can be [C, T] if there is a single description. It can also be | |
a list of [C, T] tensors. | |
melody_sample_rate: (int): Sample rate of the melody waveforms. | |
progress (bool, optional): Flag to display progress of the generation process. Defaults to False. | |
""" | |
if melody_wavs is not None: | |
if melody_wavs.dim() == 2: | |
melody_wavs = melody_wavs[None] | |
if melody_wavs.dim() != 3: | |
raise ValueError("Melody wavs should have a shape [B, C, T].") | |
melody_wavs = list(melody_wavs) | |
if vocal_wavs is not None: | |
if vocal_wavs.dim() == 2: | |
vocal_wavs = vocal_wavs[None] | |
if vocal_wavs.dim() != 3: | |
raise ValueError("Vocal wavs should have a shape [B, C, T].") | |
vocal_wavs = list(vocal_wavs) | |
if bgm_wavs is not None: | |
if bgm_wavs.dim() == 2: | |
bgm_wavs = bgm_wavs[None] | |
if bgm_wavs.dim() != 3: | |
raise ValueError("BGM wavs should have a shape [B, C, T].") | |
bgm_wavs = list(bgm_wavs) | |
texts, audio_qt_embs = self._prepare_tokens_and_attributes(lyrics=lyrics, melody_wavs=melody_wavs, vocal_wavs=vocal_wavs, bgm_wavs=bgm_wavs, melody_is_wav=melody_is_wav) | |
tokens = self._generate_tokens(texts, descriptions, audio_qt_embs) | |
if (tokens == self.lm.eos_token_id).any(): | |
length = torch.nonzero(torch.eq(tokens, self.lm.eos_token_id))[:,-1].min() | |
tokens = tokens[...,:length] | |
if return_tokens: | |
return tokens | |
else: | |
out = self.generate_audio(tokens) | |
return out | |
def _prepare_tokens_and_attributes( | |
self, | |
lyrics: tp.Sequence[tp.Optional[str]], | |
melody_wavs: tp.Optional[MelodyList] = None, | |
vocal_wavs: tp.Optional[MelodyList] = None, | |
bgm_wavs: tp.Optional[MelodyList] = None, | |
melody_is_wav = True | |
) -> tp.Tuple[tp.List[str], tp.List[torch.Tensor]]: | |
"""Prepare model inputs. | |
Args: | |
descriptions (list of str): A list of strings used as text conditioning. | |
prompt (torch.Tensor): A batch of waveforms used for continuation. | |
melody_wavs (torch.Tensor, optional): A batch of waveforms | |
used as melody conditioning. Defaults to None. | |
""" | |
assert len(lyrics) == 1 | |
texts = [lyric for lyric in lyrics] | |
audio_qt_embs = [] | |
target_melody_token_len = self.lm.cfg.prompt_len * self.audiotokenizer.frame_rate | |
# import pdb; pdb.set_trace() | |
if melody_wavs is None: | |
melody_tokens = torch.full((1,1,target_melody_token_len), 16385, device=self.device).long() | |
elif melody_wavs is not None: | |
if 'prompt_audio' not in self.lm.condition_provider.conditioners: | |
raise RuntimeError("This model doesn't support melody conditioning. " | |
"Use the `melody` model.") | |
assert len(melody_wavs) == len(texts), \ | |
f"number of melody wavs must match number of descriptions! " \ | |
f"got melody len={len(melody_wavs)}, and descriptions len={len(texts)}" | |
if type(melody_wavs) == list: | |
melody_wavs = torch.stack(melody_wavs, dim=0) | |
melody_wavs = melody_wavs.to(self.device) | |
if melody_is_wav: | |
melody_tokens, scale = self.audiotokenizer.encode(melody_wavs) | |
else: | |
melody_tokens = melody_wavs | |
if melody_tokens.shape[-1] > target_melody_token_len: | |
melody_tokens = melody_tokens[...,:target_melody_token_len] | |
elif melody_tokens.shape[-1] < target_melody_token_len: | |
melody_tokens = torch.cat([melody_tokens, torch.full((1,1,target_melody_token_len - melody_tokens.shape[-1]), 16385, device=self.device).long()], dim=-1) | |
if self.seperate_tokenizer is not None: | |
if vocal_wavs is not None: | |
if type(vocal_wavs) == list: | |
vocal_wavs = torch.stack(vocal_wavs, dim=0) | |
if bgm_wavs is None: | |
use_bgm = False | |
bgm_wavs = torch.zeros_like(vocal_wavs) | |
bgm_wavs[:, 0] = 1.0 | |
bgm_wavs[:, 1:] = torch.randn_like(bgm_wavs[:, 1:])* 0.0003 | |
else: | |
use_bgm = True | |
if type(bgm_wavs) == list: | |
bgm_wavs = torch.stack(bgm_wavs, dim=0) | |
vocal_wavs = vocal_wavs.to(self.device) | |
bgm_wavs = bgm_wavs.to(self.device) | |
vocal_tokens, bgm_tokens = self.seperate_tokenizer.encode(vocal_wavs, bgm_wavs) | |
assert len(vocal_tokens.shape) == len(bgm_tokens.shape) == 3, \ | |
f"vocal and bgm tokens should have a shape [B, C, T]! " \ | |
f"got vocal len={vocal_tokens.shape}, and bgm len={bgm_tokens.shape}" | |
assert vocal_tokens.shape[-1] == bgm_tokens.shape[-1], \ | |
f"vocal and bgm tokens should have the same length! " \ | |
f"got vocal len={vocal_tokens.shape[-1]}, and bgm len={bgm_tokens.shape[-1]}" | |
if not use_bgm: | |
bgm_tokens = torch.full_like(bgm_tokens, 16385) | |
if bgm_tokens.shape[-1] > target_melody_token_len: | |
bgm_tokens = bgm_tokens[...,:target_melody_token_len] | |
elif bgm_tokens.shape[-1] < target_melody_token_len: | |
bgm_tokens = torch.cat([bgm_tokens, torch.full((1,1,target_melody_token_len - bgm_tokens.shape[-1]), 16385, device=self.device).long()], dim=-1) | |
if vocal_tokens.shape[-1] > target_melody_token_len: | |
vocal_tokens = vocal_tokens[...,:target_melody_token_len] | |
elif vocal_tokens.shape[-1] < target_melody_token_len: | |
vocal_tokens = torch.cat([vocal_tokens, torch.full((1,1,target_melody_token_len - vocal_tokens.shape[-1]), 16385, device=self.device).long()], dim=-1) | |
else: | |
bgm_tokens = torch.full((1,1,target_melody_token_len), 16385, device=self.device).long() | |
vocal_tokens = torch.full((1,1,target_melody_token_len), 16385, device=self.device).long() | |
melody_tokens = torch.cat([melody_tokens, vocal_tokens, bgm_tokens], dim=1) | |
assert melody_tokens.shape[-1] == target_melody_token_len | |
audio_qt_embs = melody_tokens.long() | |
return texts, audio_qt_embs | |
def _generate_tokens(self, | |
texts: tp.Optional[tp.List[str]] = None, | |
descriptions: tp.Optional[tp.List[str]] = None, | |
audio_qt_embs: tp.Optional[tp.List[torch.Tensor]] = None) -> torch.Tensor: | |
"""Generate discrete audio tokens given audio prompt and/or conditions. | |
Args: | |
attributes (list of ConditioningAttributes): Conditions used for generation (text/melody). | |
prompt_tokens (torch.Tensor, optional): Audio prompt used for continuation. | |
progress (bool, optional): Flag to display progress of the generation process. Defaults to False. | |
Returns: | |
torch.Tensor: Generated audio, of shape [B, C, T], T is defined by the generation params. | |
""" | |
total_gen_len = int(self.duration * self.frame_rate) | |
current_gen_offset: int = 0 | |
def _progress_callback(generated_tokens: int, tokens_to_generate: int): | |
generated_tokens += current_gen_offset | |
if self._progress_callback is not None: | |
# Note that total_gen_len might be quite wrong depending on the | |
# codebook pattern used, but with delay it is almost accurate. | |
self._progress_callback(generated_tokens, total_gen_len) | |
else: | |
print(f'{generated_tokens: 6d} / {total_gen_len: 6d}', end='\r') | |
if self.duration <= self.max_duration: | |
# generate by sampling from LM, simple case. | |
with self.autocast: | |
gen_tokens = self.lm.generate(texts=texts, | |
descriptions=descriptions, | |
audio_qt_embs=audio_qt_embs, | |
max_gen_len=total_gen_len, | |
**self.generation_params) | |
else: | |
raise NotImplementedError(f"duration {self.duration} < max duration {self.max_duration}") | |
return gen_tokens | |
def generate_audio(self, gen_tokens: torch.Tensor, prompt=None, vocal_prompt=None, bgm_prompt=None): | |
"""Generate Audio from tokens""" | |
assert gen_tokens.dim() == 3 | |
if self.seperate_tokenizer is not None: | |
gen_tokens_song = gen_tokens[:, [0], :] | |
gen_tokens_vocal = gen_tokens[:, [1], :] | |
gen_tokens_bgm = gen_tokens[:, [2], :] | |
# gen_audio_song = self.audiotokenizer.decode(gen_tokens_song, prompt) | |
gen_audio_seperate = self.seperate_tokenizer.decode([gen_tokens_vocal, gen_tokens_bgm], vocal_prompt, bgm_prompt) | |
return gen_audio_seperate | |
else: | |
gen_audio = self.audiotokenizer.decode(gen_tokens, prompt) | |
return gen_audio | |