Spaces:
Running
on
L40S
Running
on
L40S
import json | |
import torch | |
from tqdm import tqdm | |
import torchaudio | |
import librosa | |
import os | |
import math | |
import numpy as np | |
from tools.get_bsrnnvae import get_bsrnnvae | |
import tools.torch_tools as torch_tools | |
class Tango: | |
def __init__(self, \ | |
device="cuda:0"): | |
self.sample_rate = 44100 | |
self.device = device | |
self.vae = get_bsrnnvae() | |
self.vae = self.vae.eval().to(device) | |
def sound2sound_generate_longterm(self, fname, batch_size=1, duration=20.48, steps=200, disable_progress=False): | |
""" Genrate audio without condition. """ | |
num_frames = math.ceil(duration * 100. / 8) | |
with torch.no_grad(): | |
orig_samples, fs = torchaudio.load(fname) | |
if(fs!=44100): | |
orig_samples = torchaudio.functional.resample(orig_samples, fs, 44100) | |
fs = 44100 | |
if(orig_samples.shape[-1]<int(duration*44100*2)): | |
orig_samples = torch.cat([orig_samples, torch.zeros(orig_samples.shape[0], int(duration*44100*2+480)-orig_samples.shape[-1], \ | |
dtype=orig_samples.dtype, device=orig_samples.device)], -1) | |
# orig_samples = torch.cat([torch.zeros(orig_samples.shape[0], int(duration * fs)//2, dtype=orig_samples.dtype, device=orig_samples.device), orig_samples, torch.zeros(orig_samples.shape[0], int(duration * fs)//2, dtype=orig_samples.dtype, device=orig_samples.device)], -1).to(self.device) | |
orig_samples = torch.cat([orig_samples, torch.zeros(orig_samples.shape[0], int(duration * fs)//2, dtype=orig_samples.dtype, device=orig_samples.device)], -1).to(self.device) | |
if(fs!=44100):orig_samples = torchaudio.functional.resample(orig_samples, fs, 44100) | |
# resampled_audios = orig_samples[[0],int(4.64*44100):int(35.36*48000)+480].clamp(-1,1) | |
resampled_audios = orig_samples[[0],0:int(duration*2*44100)+480].clamp(-1,1) | |
orig_samples = orig_samples[[0],0:int(duration*2*44100)] | |
audio = self.vae(orig_samples[:,None,:])[:,0,:] | |
if(orig_samples.shape[-1]<audio.shape[-1]): | |
orig_samples = torch.cat([orig_samples, torch.zeros(orig_samples.shape[0], audio.shape[-1]-orig_samples.shape[-1], dtype=orig_samples.dtype, device=orig_samples.device)],-1) | |
else: | |
orig_samples = orig_samples[:,0:audio.shape[-1]] | |
output = torch.cat([orig_samples.detach().cpu(),audio.detach().cpu()],0) | |
return output | |