hainazhu
Add application file
258fd02
raw
history blame
49.8 kB
from torch.utils.data import Dataset
from beartype.typing import Sequence, Callable, Optional, Dict, Tuple, List, Union
from beartype import beartype
from beartype.door import is_bearable
import random
import pandas as pd
import os
from torchaudio.functional import resample
import torch
import typing as tp
from pathlib import Path
import torchaudio as ta
import torch.nn.functional as F
import numpy as np
import json
import yaml
import torchaudio
import math
import re
from loguru import logger
import ffmpeg
class Read_and_PadCrop_Normalized_T(torch.nn.Module):
def __init__(self, n_samples: int, sample_rate: int, randomize: bool = True):
super().__init__()
self.n_samples = n_samples
self.sample_rate = sample_rate
self.randomize = randomize
def __call__(self, filename: str, duration: float, cur_sample_rate: int) -> Tuple[torch.Tensor, float, float, int, int]:
if self.n_samples < 0: #means not clip
chunk, _ = torchaudio.load(filename, frame_offset=0, num_frames=-1)
t_start = 0.
t_end = 1.0
offset = 0
else:
if(duration<(float(self.n_samples)/self.sample_rate+1)):
# print(duration,(float(self.n_samples)/self.sample_rate+1))
chunk, _ = torchaudio.load(filename, frame_offset=0, num_frames=-1)
t_start = 0.
t_end = min(1.0, float(self.n_samples) / float(self.sample_rate) / duration)
offset = 0
# print('c1:',chunk.shape)
else:
offset = np.random.randint(0,int(duration*cur_sample_rate)-int(float(self.n_samples)/self.sample_rate*cur_sample_rate))
t_start = offset / float(cur_sample_rate) / duration
t_end = t_start + float(self.n_samples) / float(self.sample_rate) / duration
chunk, _ = torchaudio.load(filename, frame_offset=offset, num_frames=int(float(self.n_samples)/self.sample_rate*cur_sample_rate))
# print('offset:',offset)
# print('c0:',chunk.shape)
# Pad with silence if necessary.
if(chunk.shape[0]>1):
chunk = chunk[torch.randint(chunk.shape[0], size=(1,)),:].float()
else:
chunk = chunk[[0],:].float()
if(cur_sample_rate!=self.sample_rate):
# print('a:',cur_sample_rate,chunk.shape)
chunk = torchaudio.functional.resample(chunk, cur_sample_rate, self.sample_rate)
# print('b:',self.sample_rate,chunk.shape)
if self.n_samples > 0:
if chunk.shape[-1] < self.n_samples:
chunk = torch.cat([chunk, torch.zeros((1, self.n_samples - chunk.shape[-1],))],-1)
else:
chunk = chunk[:,0:self.n_samples]
seconds_start = math.floor(offset / cur_sample_rate)
seconds_total = math.floor(duration)
return (
chunk,
t_start,
t_end,
seconds_start,
seconds_total
)
class Read_and_PadCrop_Normalized_T_Avoid_Watermark(torch.nn.Module):
def __init__(self, n_samples: int, sample_rate: int, randomize: bool = True, w_start = 0, w_interval = 11.3):
super().__init__()
self.n_samples = n_samples
self.sample_rate = sample_rate
self.randomize = randomize
self.w_start = w_start
self.w_interval = w_interval
def __call__(self, filename: str, duration: float, cur_sample_rate: int) -> Tuple[torch.Tensor, float, float, int, int]:
if self.n_samples < 0: #means not clip
chunk, _ = torchaudio.load(filename, frame_offset=0, num_frames=-1)
t_start = 0.
t_end = 1.0
offset = 0
else:
if(duration<(float(self.n_samples)/self.sample_rate+1)):
# print(duration,(float(self.n_samples)/self.sample_rate+1))
chunk, _ = torchaudio.load(filename, frame_offset=0, num_frames=-1)
t_start = 0.
t_end = min(1.0, float(self.n_samples) / float(self.sample_rate) / duration)
offset = 0
# print('c1:',chunk.shape)
else:
n_offset_option = (duration - self.w_start) // self.w_interval
if n_offset_option <= 1:
offset = 0
else:
offset = int((random.randint(0,n_offset_option-1) * self.w_interval + self.w_start) * cur_sample_rate)
# offset = np.random.randint(0,int(duration*cur_sample_rate)-int(float(self.n_samples)/self.sample_rate*cur_sample_rate))
t_start = offset / float(cur_sample_rate) / duration
t_end = t_start + float(self.n_samples) / float(self.sample_rate) / duration
chunk, _ = torchaudio.load(filename, frame_offset=offset, num_frames=int(float(self.n_samples)/self.sample_rate*cur_sample_rate))
# print('offset:',offset)
# print('c0:',chunk.shape)
# Pad with silence if necessary.
if(chunk.shape[0]>1):
chunk = chunk[torch.randint(chunk.shape[0], size=(1,)),:].float()
else:
chunk = chunk[[0],:].float()
if(cur_sample_rate!=self.sample_rate):
# print('a:',cur_sample_rate,chunk.shape)
chunk = torchaudio.functional.resample(chunk, cur_sample_rate, self.sample_rate)
# print('b:',self.sample_rate,chunk.shape)
if self.n_samples > 0:
if chunk.shape[-1] < self.n_samples:
chunk = torch.cat([chunk, torch.zeros((1, self.n_samples - chunk.shape[-1],))],-1)
else:
chunk = chunk[:,0:self.n_samples]
seconds_start = math.floor(offset / cur_sample_rate)
seconds_total = math.floor(duration)
return (
chunk,
t_start,
t_end,
seconds_start,
seconds_total
)
USE_DUMMY_AUDIO = False #当测试代码时,可以将其置为True,这样就不会读取实际数据,而是用生成的静默音频代替
if USE_DUMMY_AUDIO:
logger.warning("USE_DUMMY_AUDIO flag is True, don't use it when train or test!")
class SafeAudioReader:
"""
This class is an adaptor to Read_and_PadCrop_Normalized_T, make it safe to read audio data.
"""
def __init__(self,
duration: float, # 返回音频长度
sample_rate: int, # 返回音频的采样率,如与实际音频采样率不同,会作resample
randomize: bool = True,
use_avoid_watermark_policy = False,
):
self.n_samples = int(sample_rate * duration)
self.reader = (
Read_and_PadCrop_Normalized_T_Avoid_Watermark if use_avoid_watermark_policy \
else Read_and_PadCrop_Normalized_T
)(n_samples=self.n_samples, sample_rate=sample_rate, randomize=randomize)
#NOTE:这个是核心的函数,所有数据集读取音频都是调用的这个函数!
def __call__(self,
filepath: os.PathLike, # 音频路径
origin_sample_rate: Optional[int] = None, # 从json文件中读取的实际采样率,如果不给定,则会从文件头中读取
origin_duration: float = None, # 从json文件中读取的实际时长,如果不给定,则会从文件头中读取
) -> torch.Tensor:
if USE_DUMMY_AUDIO:
wav = torch.zeros(self.n_samples, dtype=torch.float32)
return wav
try:
if origin_sample_rate is None or origin_duration is None:
# audio_info = torchaudio.info(filepath)
# origin_sample_rate = audio_info.sample_rate
# origin_duration = audio_info.num_frames / origin_sample_rate
info = ffmpeg.probe(filepath)
origin_duration = float(info['format']['duration'])
origin_sample_rate = int(info['streams'][0]['sample_rate'])
wav, *ignored = self.reader(filepath, origin_duration, origin_sample_rate)
wav = wav.squeeze_(0)
except Exception as e:
logger.error(f"Error reading {filepath}: {e}")
wav = torch.zeros(self.n_samples, dtype=torch.float32)
return wav
class PromptTemplate:
def __init__(self, template_text: str, tag_map: Dict[str, str], lang:str ='en'):
self.template_text = template_text
self.tag_map = tag_map
self.lang = lang
@property
def tags(self):
return tuple(self.tag_map.keys())
def apply(self, **kwargs):
for tag in list(kwargs.keys()):
if kwargs[tag] == '':
kwargs.pop(tag)
for tag in self.tags:
if tag in kwargs:
kwargs[tag] = self.tag_map[tag].format(**{tag: kwargs[tag]}).strip('[]')
else:
kwargs[tag] = ''
prompt = self.template_text.format(**kwargs)
return self.beautify(prompt)
def beautify(self, text):
if self.lang == 'en':
return self._beautify_en(text)
elif self.lang == 'zh':
return self._beautify_zh(text)
else:
raise ValueError(f'Unknown language {self.lang}')
@staticmethod
def _beautify_en(text):
# no continuous commas without content between them
text = re.sub(r'[,\s]*,[,\s]*', r', ', text)
# no continuous whitespace
text = re.sub(r'\s+', ' ', text)
# the comma is NOT followed by whitespace, and should be followed by ONE whitespace
text = re.sub(r'\s+,', r',', text)
text = re.sub(r',\s+', r', ', text)
# no whitespace before the full stop
text = re.sub(r'\s+\.', r'.', text)
# strip whitespace, comma, and replace ',.'
text = text.strip(' ,')
text = text.replace(',.', '.')
return text
@staticmethod
def _beautify_zh(text):
# no continuous commas without content between them
text = re.sub(r'[,、\s]*,[,、\s]*', r',', text)
text = re.sub(r'[,、\s]*、[,、\s]*', r'、', text)
# assume there should be NO whitespace in Chinese
text = re.sub(r'\s+', r'', text)
# strip whitespace, comma, and replace ',。'
text = text.strip(', 、')
text = text.replace(',。', '。')
return text
def __repr__(self):
return f'PromptTemplate({self.template_text!r}, {self.tag_map!r})'
__str__ = __repr__
def parse_prompt_template(prompt_template_text, lang='en'):
span_pattern = re.compile(r'\[.*?{.+?}.*?\]', re.DOTALL)
tag_pattern = re.compile(r'{.+?}', re.DOTALL)
template_text = prompt_template_text.strip()
span_texts = span_pattern.findall(prompt_template_text)
tag_map = {}
for span_text in span_texts:
tag = tag_pattern.findall(span_text)[0].strip('{}')
tag_map[tag] = span_text
template_text = template_text.replace(span_text, '{'+tag+'}')
return PromptTemplate(template_text=template_text, tag_map=tag_map, lang=lang)
def load_prompt_templates(path, num = 5, lang='en') -> List[PromptTemplate]:
with open(path, 'r') as f:
lines = f.readlines()
cnt = 0
pts = []
for line in lines:
pt = parse_prompt_template(line, lang=lang)
cnt += 1
if len(pt.tags) < num:
logger.error(f'Not enough tags on {path} in line {cnt}: {pt.tags}')
pts.append(pt)
return pts
def get_base_dir_file(key: os.PathLike):
base = os.path.basename(key)
dirname = os.path.basename(os.path.dirname(key))
return os.path.join(dirname, base)
def read_jsonlike(path: os.PathLike):
#json or jsonl
if str(path).endswith(".json"):
with open(path, 'r', encoding='utf8') as f:
data = json.load(f)
return data
elif str(path).endswith(".jsonl"):
with open(path, 'r', encoding='utf8') as f:
data = [json.loads(line) for line in f.readlines()]
return data
else:
raise ValueError("Unknown file format")
dist_prob_map = {
1: (1.0,),
2: (0.5, 0.5),
3: (0.3, 0.4, 0.3),
4: (0.2, 0.3, 0.3, 0.2),
5: (0.2, 0.2, 0.3, 0.2, 0.1),
6: (0.1, 0.15, 0.2, 0.2, 0.2, 0.15),
7: (0.05, 0.1, 0.1, 0.2, 0.25, 0.2, 0.1),
8: (0.03, 0.05, 0.1, 0.15, 0.25, 0.2, 0.1, 0.12),
9: (0.02, 0.1, 0.1, 0.1, 0.15, 0.2, 0.15, 0.1, 0.08),
10: (0.01, 0.1, 0.1, 0.15, 0.2, 0.15, 0.1, 0.05, 0.05, 0.09)
}
'''
#更加偏向短文本的方案
dist_prob_map = {
1: (1.0,),
2: (0.7, 0.3),
3: (0.7, 0.2, 0.1),
4: (0.6, 0.2, 0.1, 0.1),
5: (0.6, 0.2, 0.1, 0.05, 0.05),
6: (0.6, 0.15, 0.1, 0.05, 0.05, 0.05),
7: (0.05, 0.1, 0.1, 0.2, 0.25, 0.2, 0.1),
8: (0.03, 0.05, 0.1, 0.15, 0.25, 0.2, 0.1, 0.12),
9: (0.02, 0.1, 0.1, 0.1, 0.15, 0.2, 0.15, 0.1, 0.08),
10: (0.01, 0.1, 0.1, 0.15, 0.2, 0.15, 0.1, 0.05, 0.05, 0.09)
}
'''
#全部都用的方案
# dist_prob_map = {
# 1: (1.0,),
# 2: (0, 1.0),
# 3: (0, 0, 1.0),
# 4: (0, 0, 0, 1.0),
# 5: (0, 0, 0, 0, 1.0),
# 6: (0, 0, 0, 0, 0, 1.0),
# 7: (0, 0, 0, 0, 0, 0, 1.0),
# 8: (0, 0, 0, 0, 0, 0, 0, 1.0),
# 9: (0, 0, 0, 0, 0, 0, 0, 0, 1.0),
# 10: (0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0)
# }
dist_prob_map_low = {
1: (1.0,),
2: (0.8, 0.2),
3: (0.8, 0.1, 0.1),
4: (0.7, 0.1, 0.1, 0.1),
5: (0.7, 0.1, 0.1, 0.05, 0.05),
6: (0.7, 0.1, 0.05, 0.05, 0.05, 0.05),
}
_bpm_range_rights = (
(40, '20-40'),
(60, '40-60'),
(66, '60-66'),
(76, '66-76'),
(108, '76-108'),
(120, '108-120'),
(168, '120-168'),
(176, '168-176'),
(200, '176-200')
)
_bpm_desc_map = {
'20-40': ("glacial pace", "extremely slow tempo", "crawl-like speed", "snail's pace", "almost motionless rhythm", "Larghissimo"),
'40-60': ("broad and slow", "spacious tempo", "unhurried pace", "calm rhythm", "relaxed speed", "Largo"),
'60-66': ("gentle tempo", "leisurely pace", "easy-going rhythm", "unrushed speed", "smooth and slow", 'Larghetto'),
'66-76': ("slow and steady", "deliberate tempo", "unhurried pace", "relaxed rhythm", "easy speed", 'Adagio'),
'76-108': ("walking pace", "moderate tempo", "steady rhythm", "balanced speed", "easy-flowing tempo", "Andante"),
'108-120': ("medium pace", "comfortable tempo", "even rhythm", "measured speed", "controlled tempo", 'Moderato'),
'120-168': ("quick and lively", "brisk pace", "energetic tempo", "upbeat rhythm", "spirited speed", 'Allegro'),
'168-176': ("lively and fast", "bright tempo", "sprightly pace", "vibrant rhythm", "animated speed", 'Vivace'),
'176-200': ("very fast tempo", "rapid pace", "high-speed rhythm", "hurried speed", "accelerated tempo", 'Presto'),
'>200': ("extremely fast", "breakneck speed", "blazing tempo", "lightning-fast rhythm", "supercharged pace", 'Prestissimo')
}
_bpm_desc_map_zh = {
'20-40': ("极度缓慢", "极慢的节奏", "悠长的旋律", "迟缓的节奏", "几乎静止的节奏", "甚缓"),
'40-60': ("宽广而缓慢", "宽敞的节奏", "从容不迫的速度", "平静的节奏", "轻松的速度", "广板"),
'60-66': ("柔和的节奏", "悠闲的速度", "轻松的节奏", "不慌不忙的速度", "平滑而缓慢", '小广板'),
'66-76': ("缓慢而稳定", "沉稳的旋律", "从容不迫的速度", "轻松的节奏", "轻松的速度", '慢板'),
'76-108': ("步行速度", "适中的节奏", "稳定的节奏", "平衡的速度", "流畅的节奏", "行板"),
'108-120': ("中等速度", "舒适的节奏", "均匀的节奏", "有节制的速度", "稳定的氛围", '中板'),
'120-168': ("快速而生动", "轻快的速度", "充满活力的节奏", "欢快的节奏", "富有精神的速度", '快板'),
'168-176': ("生动而快速", "明快的节奏", "活泼的速度", "充满活力的节奏", "生气勃勃的速度", '活泼的'),
'176-200': ("非常快的节奏", "快速的速度", "高速的节奏", "匆忙的速度", "加速的节奏", '急板'),
'>200': ("极快的速度", "极速旋律", "炽热的节奏", "闪电般的节奏", "疾驰的速度", '最急板')
}
def get_bpm_range(bpm):
bpm = int(bpm)
for right, tag in _bpm_range_rights:
if bpm <= right:
return tag
return '>200'
def gen_bpm_descript(bpm, lang='en'):
bpm_range = get_bpm_range(bpm)
if lang == 'en':
return random.choice(_bpm_desc_map[bpm_range])
elif lang == 'zh':
return random.choice(_bpm_desc_map_zh[bpm_range])
else:
raise ValueError(f"Unknown language {lang}")
def read_translate(translate: Union[Dict[str, os.PathLike], os.PathLike, None]):
if translate is None:
return None
if isinstance(translate, str):
return read_jsonlike(translate)
return {k: read_jsonlike(path) for k, path in translate.items()}
def gen_plain_prompt(key_list, sep=', '):
if len(key_list) == 0:
return 'none'
key_list = [k.strip() for k in key_list]
if len(key_list) > 10:
random.shuffle(key_list)
key_list = key_list[:10]
probs = dist_prob_map[len(key_list)]
num_tags = random.choices(range(1, len(key_list)+1), probs, k=1)[0]
random.shuffle(key_list)
tags = key_list[:num_tags]
tags_str = sep.join(tags)
return tags_str
class MagnaTagATuneDataset(Dataset):
def __init__(self):
pass
def tags_to_desc(tag_list, sep=',') -> str:
if not isinstance(tag_list, Sequence):
return str(tag_list)
if isinstance(tag_list, str):
return tag_list
if len(tag_list) <= 0:
return ''
elif len(tag_list) <= 5:
probs = dist_prob_map[len(tag_list)]
tags_num = random.choices(range(1, len(tag_list)+1), probs)[0]
random.shuffle(tag_list)
tag_list = tag_list[:tags_num]
return sep.join(tag_list)
else:
probs = dist_prob_map[5]
tags_num = random.choices(range(1, 6), probs)[0]
random.shuffle(tag_list)
tag_list = tag_list[:tags_num]
return sep.join(tag_list)
def get_sr_and_duration_info(item):
return item.get('sample_rate', None), item.get('duration', None)
class MtgJamendoDatasetFromJson(Dataset):
def __init__(self,
data_dir:str,
json_path:str,
duration:float=10,
sr:int = 0,
lang = 'en',
plain_rate = 0,
return_audio = True,
return_path = False,
prompt_template_path: os.PathLike = None,
tag_types = [],
translate:Optional[Dict[str, os.PathLike]] = None,
use_literal_none = True,
):
self.audio_reader = SafeAudioReader(duration, sr)
self.data_dir = data_dir
self._load_metadata_json(json_path)
self.sr = sr
self.duration = duration
self.plain_rate = plain_rate
self.return_audio = return_audio
self.return_path = return_path
self.use_literal_none = use_literal_none
self.lang = lang
self.use_dynamic_prompt = prompt_template_path is not None and plain_rate < 1.0
if self.use_dynamic_prompt:
self.prompt_templates = load_prompt_templates(prompt_template_path, num = len(tag_types))
self.tag_types = tag_types
self.translate = read_translate(translate)
#这些tag被认为是弱语义的,会避免产生仅包含这些tag的文本提示
WEAK_TAG_LIST = ["title", "artist"]
def _load_metadata_json(self, json_path):
with open(json_path) as fp:
self.data = json.load(fp)
def convert_key_to_path(self, key):
return os.path.join(self.data_dir, get_base_dir_file(key))
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
path = self.convert_key_to_path(item['key'])
description = self.generate_description(item)
if self.return_audio:
sr, duration = get_sr_and_duration_info(item)
audio = self.audio_reader(path, sr, duration)
else:
audio = None
if self.return_path:
return audio, description, path
return audio, description
def tags_to_desc(self, tag_list, tag_type) -> str:
if self.lang == 'en':
return tags_to_desc(tag_list)
elif self.lang == 'zh':
translator = self.translate[tag_type]
translated_tag_list = [translator[tag] for tag in tag_list if tag in translator ]
return tags_to_desc(translated_tag_list, sep='、')
def generate_description(self, item):
if random.random() > self.plain_rate:
# dynamically generate prompt from given prompt template
prompt_template = random.choice(self.prompt_templates)
description = self.generate_description_dynamic(item, prompt_template)
else:
# use plain prompt, i.e. tags sequence separated by comma
description = self.generate_description_plain(item)
return description
def generate_description_dynamic(self, data, prompt_template: PromptTemplate):
exists_tag = [key for key in data if (key in self.tag_types) and (data[key] is not None) and (len(data[key]) > 0)]
exists_weak_tag = list(filter(lambda t: t in self.WEAK_TAG_LIST, exists_tag))
exists_strong_tag = list(filter(lambda t: t not in self.WEAK_TAG_LIST, exists_tag))
if len(exists_strong_tag) > 0:
probs = dist_prob_map[len(exists_strong_tag)]
tags_num = random.choices(range(1, len(exists_strong_tag)+1), probs)[0]
random.shuffle(exists_strong_tag)
tags = exists_strong_tag[:tags_num]
weak_probs = dist_prob_map_low[len(exists_weak_tag) + 1]
weak_tags_num = random.choices(range(0, len(exists_weak_tag) + 1), weak_probs)[0]
random.shuffle(exists_weak_tag)
weak_tags = exists_weak_tag[:weak_tags_num]
tags += weak_tags
tags_args = {tag: self.tags_to_desc(data[tag], tag) for tag in tags}
prompt = prompt_template.apply(**tags_args)
else:
# no strong tags, use all weak tags instead
tags_args = {tag: self.tags_to_desc(data[tag], tag) for tag in exists_weak_tag}
prompt = prompt_template.apply(**tags_args)
if self.use_literal_none and len(tags_args) == 0:
return 'none'
return prompt
def generate_description_plain(self, item):
keywords = []
for tag_t in self.tag_types:
this_key = item[tag_t]
if this_key is None:
continue
if isinstance(this_key, str):
this_key = [this_key]
if self.lang != 'en':
this_key = [self.get_translation(tag_t, k) for k in this_key]
keywords += this_key
return gen_plain_prompt(keywords, sep=self.keysep)
def get_translation(self, tag_t, k):
k = k.strip()
if k in self.translate[tag_t]:
return self.translate[tag_t][k]
else:
return k
@property
def keysep(self):
if self.lang == 'zh':
return ',' if random.random() > 0.5 else '、'
elif self.lang == 'en':
return ', '
class AudioStockDataset(Dataset):
def __init__(self,
metadata_path:str,
duration:float=10,
sr:int = 0,
plain_rate = 0,
return_path = False,
return_audio = True,
prompt_template_path: os.PathLike = None,
tag_types = [],
lang = 'en',
translate:Optional[Dict[str, os.PathLike]] = None,
use_literal_none = True,
):
self.audio_reader = SafeAudioReader(duration, sr)
self._load_metadata(metadata_path)
self.sr = sr
self.duration = duration
self.plain_rate = plain_rate
self.return_path = return_path
self.return_audio = return_audio
self.use_literal_none = use_literal_none
self.use_dynamic_prompt = prompt_template_path is not None and plain_rate < 1.0
if self.use_dynamic_prompt:
self.prompt_templates = load_prompt_templates(prompt_template_path, num = len(tag_types), lang = lang)
self.tag_types = tag_types
self.lang = lang
self.translate = read_translate(translate)
def _load_metadata(self, metadata_path):
with open(metadata_path) as fp:
lines = fp.readlines()
self.data = []
for line in lines:
item = json.loads(line)
self.data.append(item)
self.is_info_recorded = bool('Tags' in self.data[0])
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
path:str = self.data[idx]["path"]
json_path = path[:path.rfind('.')] + ".json"
if self.is_info_recorded:
item = self.data[idx]
else:
try:
with open(json_path) as fp:
item:dict = json.load(fp)
except Exception as e:
print(f"Error loading json file {json_path} :\n{e}")
item = {}
description = self.generate_description(item)
if self.return_audio:
sr, duration = get_sr_and_duration_info(item)
audio = self.audio_reader(path, sr, duration)
else:
audio = None
if self.return_path:
return audio, description, path
return audio, description
def generate_description(self, item):
if random.random() > self.plain_rate:
# dynamically generate prompt from given prompt template
prompt_template = random.choice(self.prompt_templates)
description = self.generate_description_dynamic(item, prompt_template)
else:
# use plain prompt, i.e. tags sequence separated by comma
description = self.generate_description_plain(item)
return description
def generate_description_dynamic(self, data, prompt_template: PromptTemplate):
exists_tag = [key for key in data if (key in self.tag_types) and (data[key] is not None) and (len(data[key]) > 0)]
if len(exists_tag) > 0:
probs = dist_prob_map[len(exists_tag)]
tags_num = random.choices(range(1, len(exists_tag)+1), probs)[0]
random.shuffle(exists_tag)
tags = exists_tag[:tags_num]
tags_args = {tag: self.tags_to_desc(data[tag], tag) for tag in tags}
tags_args = self.handle_BPM_tag(tags_args)
prompt = prompt_template.apply(**tags_args)
else:
return 'none'
if self.use_literal_none and len(tags_args) == 0:
return 'none'
return prompt
def get_translation(self, tag_t, k):
k = k.strip()
if k in self.translate[tag_t]:
return self.translate[tag_t][k]
else:
return k
def generate_description_plain(self, item):
keywords = []
for tag_t in self.tag_types:
if tag_t == 'BPMDescript':
bpm = item['BPM']
if bpm is None or bpm.strip() == '' or bpm.strip() == '0':
continue
this_key = gen_bpm_descript(bpm.strip(), lang=self.lang)
elif tag_t == 'BPM':
bpm = item['BPM']
if bpm is None or bpm.strip() == '' or bpm.strip() == '0':
continue
this_key = f"{bpm.strip()} bpm"
else:
this_key = item[tag_t]
if this_key is None:
continue
if isinstance(this_key, str):
this_key = [this_key]
if self.lang != 'en':
this_key = [self.get_translation(tag_t, k) for k in this_key]
if this_key is None:
continue
if isinstance(this_key, str):
this_key = [this_key]
keywords += this_key
return gen_plain_prompt(keywords, sep=self.keysep)
@property
def keysep(self):
if self.lang == 'zh':
return ',' if random.random() > 0.5 else '、'
elif self.lang == 'en':
return ', '
def tags_to_desc(self, tag_list, tag_type) -> str:
if self.lang == 'en':
return tags_to_desc(tag_list)
elif self.lang == 'zh':
if tag_type == 'BPM':
return tags_to_desc(tag_list, sep='、')
translator = self.translate[tag_type]
translated_tag_list = [translator[tag] for tag in tag_list if tag in translator ]
return tags_to_desc(translated_tag_list, sep='、')
def handle_BPM_tag(self, tags_args):
if "BPM" in tags_args and 'BPMDescript' in self.tag_types:
bpm = tags_args["BPM"]
del tags_args["BPM"]
tag_types_used = random.choice((('BPM',), ('BPMDescript',), ('BPM', 'BPMDescript')))
for tag_type in tag_types_used:
tags_args[tag_type] = bpm if tag_type == 'BPM' else gen_bpm_descript(bpm, lang=self.lang)
return tags_args
def mp3_path_to_id(mp3_path):
return int(
mp3_path[mp3_path.rindex('/') + 1 : mp3_path.rindex('.')]
)
class TmeDataset(Dataset):
def __init__(self,
data_index:str,
music_info:str = None,
duration:float = 10,
sr:int = 0,
plain_rate = 0,
return_path = False,
return_audio = True,
return_ID = False,
prompt_format_path: os.PathLike = None,
tag_types = ['*'],
lang = 'zh',
translate: Optional[os.PathLike] = None,
prompt_dir: os.PathLike = None, #使用GPT生成的预有的prompt
):
if plain_rate > 0:
print("Tme Dataset do not support plain rate > 0, use plain_rate = 0 instead.")
plain_rate = 0
self.audio_reader = SafeAudioReader(duration, sr)
self.sr = sr
self.duration = duration
self.plain_rate = plain_rate
self.return_path = return_path
self.return_audio = return_audio
self.return_ID = return_ID
self.lang = lang
self.use_ready_prompt = prompt_dir is not None
data_index = read_jsonlike(data_index)
self.data_index_dict = {mp3_path_to_id(d['path']) : d for d in data_index}
self.data_ids = list(self.data_index_dict.keys())
if not self.use_ready_prompt:
#读取音乐的信息文件
music_info = read_jsonlike(music_info)
if 'music' in music_info:
music_info = music_info['music']
self.music_info_dict = {d["歌曲ID"]:d for d in music_info}
self.data_index_dict = {k:v for k,v in self.data_index_dict.items() if k in self.music_info_dict}
self.data_ids = list(self.data_index_dict.keys())
with open(prompt_format_path) as fp:
self.prompt_formats = yaml.load(fp, Loader=yaml.FullLoader)
#加载tag types,并分成一般的tag_types和关键的key_tag_types
if '*' in tag_types:
self.tag_types = ['歌曲名', 'bpm', '专辑名', '歌手名', '作曲', 'tag']
else:
self.tag_types = tag_types
self.key_tag_types = []
if 'tag' in self.tag_types:
self.tag_types.remove('tag')
self.key_tag_types = list(self.prompt_formats['tag'].keys())
#加载translate翻译
if translate is not None:
self.translator = read_jsonlike(translate)
else:
data_ids_set = set(self.data_ids)
self.prompts_dict = {}
for fname in os.listdir(prompt_dir):
items = read_jsonlike(os.path.join(prompt_dir, fname))
for item in items:
if item['ID'] not in data_ids_set or not self.is_valid_prompt_text(item['Text']):
continue
if item['ID'] not in self.prompts_dict:
self.prompts_dict[item['ID']] = []
self.prompts_dict[item['ID']].append(item['Text'])
self.data_index_dict = {k:v for k,v in self.data_index_dict.items() if k in self.prompts_dict}
self.data_ids = list(self.data_index_dict.keys())
def tags_to_desc(self, tag_list) -> str:
if is_bearable(tag_list, int):
return str(tag_list)
if self.lang == 'zh':
return tags_to_desc(tag_list, sep=self.sep)
else:
translated_tag_list = [self.translator[tag] for tag in tag_list if tag in self.translator ]
return tags_to_desc(translated_tag_list, sep=self.sep)
def gen_desc_of_tag(self, formats, tags):
fmt = random.choice(formats)
return fmt.format(self.tags_to_desc(tags))
@staticmethod
def check_valid(value):
if isinstance(value, int) or isinstance(value, float):
return value > 0
if (value is not None) and (not isinstance(value, Sequence) or len(value) > 0):
return True
return False
@staticmethod
def remove_repeat(data):
#若专辑名和歌曲名相同,则只使用后者
album_name = data.get('专辑名', None)
if album_name is not None and album_name == data.get('歌曲名', None):
del data['专辑名']
return data
@property
def comma(self):
if self.lang == 'zh':
return ','
elif self.lang == 'en':
return ', '
@property
def sep(self):
if self.lang == 'zh':
return '、'
elif self.lang == 'en':
return ', '
def generate_description(self, item):
if random.random() > self.plain_rate:
# dynamically generate prompt from given prompt template
description = self.generate_description_dynamic(item)
else:
# use plain prompt, i.e. tags sequence separated by comma
description = self.generate_description_plain(item)
return description
def generate_description_dynamic(self, data):
data = self.remove_repeat(data)
weak_tags = [key for key in data if (key in self.tag_types and self.check_valid(data[key]))] #弱语义的tag,这些tag的出现比例会放低
key_tags = [key for key in data['tag'] if (key in self.key_tag_types and self.check_valid(data['tag'][key]))] #关键的tag,这些tag必须出现至少一个
prompts = []
if len(weak_tags) > 0:
probs = dist_prob_map_low[len(weak_tags)]
if len(key_tags) > 0:
tags_num = random.choices(range(0, len(weak_tags)), probs)[0]
else:
tags_num = random.choices(range(1, len(weak_tags) + 1), probs)[0]
random.shuffle(weak_tags)
tags = weak_tags[:tags_num]
for tag_type in tags:
tag_desc = self.gen_desc_of_tag(self.prompt_formats[tag_type], int(data[tag_type]) if tag_type == 'bpm' else data[tag_type])
prompts.append(tag_desc)
if len(key_tags) > 0:
probs = dist_prob_map[len(key_tags)]
tags_num = random.choices(range(1, len(key_tags) + 1), probs)[0]
random.shuffle(key_tags)
tags = key_tags[:tags_num]
for tag_type in tags:
tag_desc = self.gen_desc_of_tag(self.prompt_formats['tag'][tag_type], data['tag'][tag_type])
prompts.append(tag_desc)
random.shuffle(prompts)
return self.comma.join(prompts)
def generate_description_plain(self, item):
keywords = item['tag']
if self.lang != 'en':
keywords = [self.translator[k.strip()] for k in keywords]
return gen_plain_prompt(keywords, sep=self.keysep)
@property
def keysep(self):
if self.lang == 'zh':
return ',' if random.random() > 0.5 else '、'
elif self.lang == 'en':
return ', '
def is_valid_prompt_text(self, text):
for bad in ('抱歉','sorry', 'Sorry'):
if bad in text:
return False
return True
def get_ready_prompt(self, path):
sid = mp3_path_to_id(path)
return random.choice(self.prompts_dict[sid])
def __len__(self):
return len(self.data_ids)
def __getitem__(self, idx):
data_id = self.data_ids[idx]
item = self.data_index_dict[data_id]
path = item['path']
if not self.use_ready_prompt:
info = self.music_info_dict[data_id]
description = self.generate_description(info)
else:
description = self.get_ready_prompt(path)
if self.return_audio:
sr, duration = get_sr_and_duration_info(item)
audio = self.audio_reader(path, sr, duration)
else:
audio = None
if self.return_path:
if self.return_ID:
return audio, description, path, info['歌曲ID']
return audio, description, path
if self.return_ID:
return audio, description, info['歌曲ID']
return audio, description
class Pond5Dataset(Dataset):
MAX_PROMPT_LEN = 200
def __init__(self,
metadata_path:str,
index_path:str,
duration:float=10,
sr:int = 0,
plain_rate = 0,
return_path = False,
return_audio = True,
lang = 'en',
translate:Optional[Dict[str, os.PathLike]] = None,
use_literal_none = True,
use_avoid_watermark_policy = None,
):
if use_avoid_watermark_policy is None:
raise ValueError("`use_avoid_watermark_policy` is an important param, you need to explicitly specify it with bool type")
self.use_avoid_watermark_policy = use_avoid_watermark_policy
self.audio_reader = SafeAudioReader(duration, sr, use_avoid_watermark_policy=use_avoid_watermark_policy)
self._load_metadata(metadata_path, index_path)
self.sr = sr
self.duration = duration
self.plain_rate = plain_rate
self.return_path = return_path
self.return_audio = return_audio
self.use_literal_none = use_literal_none
self.lang = lang
self.translate = read_translate(translate)
def _load_metadata(self, metadata_path, index_path):
data_index = read_jsonlike(index_path)
data_ids = set([item['id'] for item in data_index])
with open(metadata_path) as fp:
lines = fp.readlines()
append_ids = set()
self.data = []
for line in lines:
item = json.loads(line)
if item['id'] in data_ids and item['id'] not in append_ids:
self.data.append(item)
append_ids.add(item['id'])
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
path:str = item["path"]
description = self.generate_description(item)
if self.return_audio:
sr, duration = get_sr_and_duration_info(item)
audio = self.audio_reader(path, sr, duration)
else:
audio = None
if self.return_path:
return audio, description, path
return audio, description
@property
def keysep(self):
if self.lang == 'zh':
return ',' if random.random() > 0.5 else '、'
elif self.lang == 'en':
return ', '
def generate_description(self, item):
if random.random() > self.plain_rate:
# dynamically generate prompt from given prompt template
description = self.generate_description_dynamic(item)
else:
# use plain prompt, i.e. tags sequence separated by comma
description = self.generate_description_plain(item)
return description
def get_translation(self, k):
k = k.strip()
if k in self.translate:
return self.translate[k]
else:
return k
def generate_description_plain(self, item):
keywords = item['keywords']
if self.lang != 'en':
keywords = [self.get_translation(k) for k in keywords]
return gen_plain_prompt(keywords, sep=self.keysep)
def generate_description_dynamic(self,item):
desc = item.get('desc', 'none')
if desc is None:
desc = 'none'
desc = desc.strip()
if len(desc) > self.MAX_PROMPT_LEN:
shorter_desc = desc[:self.MAX_PROMPT_LEN]
# find last stop
stop_idx = shorter_desc.rfind('.')
if stop_idx == -1:
stop_idx = shorter_desc.rfind('!')
if stop_idx == -1:
stop_idx = shorter_desc.rfind(',')
if stop_idx == -1:
stop_idx = self.MAX_PROMPT_LEN - 1
desc = desc[:stop_idx+1]
return desc
class SoundDataset(Dataset):
def __init__(self,
metadata_index: str,
duration:float = 10,
min_non_silent_duration:float = 3,
sr:int = 0,
return_path = False,
return_audio = True,
):
self.data = read_jsonlike(metadata_index)
self.sr = sr
self.reader = SafeAudioReader(duration, sr)
self.duration = duration
self.min_non_silent_duration = min_non_silent_duration
self.return_audio = return_audio
self.return_path = return_path
def __getitem__(self, index):
item = self.data[index]
if self.return_audio:
origin_duration = item['duration']
if origin_duration < self.min_non_silent_duration:
audio = self.read_and_repeat_and_pad(item)
else:
audio = self.reader(item['path'], item['sample_rate'], origin_duration)
else:
audio = None
desc = item['caption']
if self.return_path:
return audio, desc, item['path']
else:
return audio, desc
def __len__(self):
return len(self.data)
def read_and_repeat_and_pad(self, item):
path = item['path']
try:
# read
clip, sr = torchaudio.load(path)
if len(clip.shape) > 1:
clip = torch.mean(clip, dim=0, keepdim=True)
clip = resample(clip, sr, self.sr)
#repeat
n_repeats = math.ceil(self.min_non_silent_duration/item['duration'])
clip = torch.repeat_interleave(clip, n_repeats, dim=0).reshape(-1)
#pad
n_samples = int(self.duration * self.sr)
if clip.shape[0] >= n_samples:
audio = clip[:n_samples]
else:
audio = torch.zeros(int(self.duration * self.sr), dtype=clip.dtype)
start_pos = np.random.randint(0, max(0,(n_samples - clip.shape[0])))
audio[start_pos:start_pos+clip.shape[0]] = clip
return audio
except Exception as e:
logger.error(f"Error reading {path}: {e}")
wav = torch.zeros(int(self.duration * self.sr), dtype=torch.float32)
return wav
class CombinedDataset(Dataset):
@beartype
def __init__(self, datasets: Sequence[Dataset], ratios: Sequence[int]):
self.datasets = datasets
self.datasets_index = []
for i,dataset in enumerate(datasets):
if dataset is None:
continue
for dup in range(ratios[i]):
for j in range(len(dataset)):
self.datasets_index.append((i,j))
def __len__(self):
return len(self.datasets_index)
def __getitem__(self, idx):
index = self.datasets_index[idx]
i,j = index
return self.datasets[i][j]
class CombinedDataset_random(Dataset):
@beartype
def __init__(self, num_examples:int, datasets: Sequence[Dataset], ratios: Sequence[int]):
self.datasets = datasets
self.datasets_index = []
for i,dataset in enumerate(datasets):
if dataset is None:
continue
for dup in range(ratios[i]):
for j in range(len(dataset)):
self.datasets_index.append((i,j))
if num_examples > 0:
self.random_choose = True
self.dataset_len = num_examples
else:
self.random_choose = False
self.dataset_len = len(self.datasets_index)
def __len__(self):
return self.dataset_len
def __getitem__(self, idx):
first_try = True
try_cnt = 0
while True:
try:
if(self.random_choose or not first_try):
index2 = []
index2.append(np.random.randint(0,len(self.datasets)))
index2.append(np.random.randint(0,len(self.datasets[index2[-1]])))
else:
index2 = self.datasets_index[idx]
first_try = False
out = list(self.datasets[index2[0]][index2[1]])
return out
except:
print("Error loadding ", index2)
try_cnt += 1
if(try_cnt>10):
raise ValueError()
class SoundMixedDataset(Dataset):
@staticmethod
def music_desc(desc):
return f'Music:<{desc}>'
@staticmethod
def sound_desc(desc):
return f'Effect:<{desc}>'
def __init__(self,
music_dataset: Dataset,
sound_dataset: Dataset,
mixed_ratios: Tuple[float, float, float] = (0.3, 0.3, 0.4) # 只有音乐:只有音效:音乐音效混合 的比例
) -> None:
self.music_dataset = music_dataset
self.sound_dataset = sound_dataset
music_r, sound_r, mix_r = [r/sum(mixed_ratios) for r in mixed_ratios] #化为0-1间的比例
#三个概率区间的左端点
self.music_anchor = 0
self.sound_anchor = music_r
self.mix_anchor = music_r + sound_r
def __len__(self):
return len(self.music_dataset)
def get_random_sound_data(self):
idx = random.randint(0, len(self.sound_dataset)-1)
return self.sound_dataset[idx]
def __getitem__(self, idx):
p = random.random()
if p >= self.mix_anchor:
music, m_desc = self.music_dataset[idx]
sound, s_desc = self.get_random_sound_data()
audio = music + sound
if(audio.abs().max()>1.0):
music = music / audio.abs().max() * 0.95
audio = audio / audio.abs().max() * 0.95
desc = self.music_desc(m_desc) + self.sound_desc(s_desc)
return audio[None,:], music[None,:], desc
elif p >= self.sound_anchor:
audio, desc = self.get_random_sound_data()
return audio[None,:], torch.zeros_like(audio[None,:]), self.sound_desc(desc)
else:
audio, desc = self.music_dataset[idx]
return audio[None,:], audio[None,:], self.music_desc(desc)
class DecoTagDataset(Dataset):
'''这个类把普通的datatset包装成适用于标签解耦学习的dataset'''
TAG_TYPES = ('genre', 'mood', 'insrument')
def __init__(self, dataset_class: type, tag_map: Dict[str, str], *args, **kwargs):
self.datasets = []
for i, tag_t in enumerate(self.TAG_TYPES):
kwargs['tag_types'] = [tag_map[tag_t]]
kwargs['return_audio'] = (i == 0) #只有第0个需要返回音频和文本,其余只需要返回文本
self.datasets.append(dataset_class(*args, **kwargs))
def __len__(self):
return len(self.datasets[0])
def __getitem__(self, idx):
audio, text = self.datasets[0][idx]
texts = (text, self.datasets[1][idx][1], self.datasets[2][idx][1])
return audio, texts
class DecoTagWrapper:
'''这是一个包装器,便于选择是否使用标签解耦学习'''
def __init__(self, dataset_class: Dataset, deco_tag_types: List[str] = list(), switch_on: bool = False):
self.dataset_class = dataset_class
self.tag_map = dict(zip(DecoTagDataset.TAG_TYPES, deco_tag_types))
self.switch_on = switch_on
def __call__(self, *args, **kwargs):
if self.switch_on:
return DecoTagDataset(self.dataset_class, self.tag_map, *args, **kwargs)
else:
return self.dataset_class(*args, **kwargs)