SongGeneration / generate.py
waytan22's picture
add auto prompt and interface
d658154
raw
history blame
6.99 kB
import sys
import os
import time
import json
import torch
import torchaudio
import numpy as np
from omegaconf import OmegaConf
from codeclm.trainer.codec_song_pl import CodecLM_PL
from codeclm.models import CodecLM
from third_party.demucs.models.pretrained import get_model_from_yaml
auto_prompt_type = ['Pop', 'R&B', 'Dance', 'Jazz', 'Folk', 'Rock', 'Chinese Style', 'Chinese Tradition', 'Metal', 'Reggae', 'Chinese Opera', 'Auto']
class Separator:
def __init__(self, dm_model_path='third_party/demucs/ckpt/htdemucs.pth', dm_config_path='third_party/demucs/ckpt/htdemucs.yaml', gpu_id=0) -> None:
if torch.cuda.is_available() and gpu_id < torch.cuda.device_count():
self.device = torch.device(f"cuda:{gpu_id}")
else:
self.device = torch.device("cpu")
self.demucs_model = self.init_demucs_model(dm_model_path, dm_config_path)
def init_demucs_model(self, model_path, config_path):
model = get_model_from_yaml(config_path, model_path)
model.to(self.device)
model.eval()
return model
def load_audio(self, f):
a, fs = torchaudio.load(f)
if (fs != 48000):
a = torchaudio.functional.resample(a, fs, 48000)
if a.shape[-1] >= 48000*10:
a = a[..., :48000*10]
else:
a = torch.cat([a, a], -1)
return a[:, 0:48000*10]
def run(self, audio_path, output_dir='tmp', ext=".flac"):
os.makedirs(output_dir, exist_ok=True)
name, _ = os.path.splitext(os.path.split(audio_path)[-1])
output_paths = []
for stem in self.demucs_model.sources:
output_path = os.path.join(output_dir, f"{name}_{stem}{ext}")
if os.path.exists(output_path):
output_paths.append(output_path)
if len(output_paths) == 1: # 4
vocal_path = output_paths[0]
else:
drums_path, bass_path, other_path, vocal_path = self.demucs_model.separate(audio_path, output_dir, device=self.device)
for path in [drums_path, bass_path, other_path]:
os.remove(path)
full_audio = self.load_audio(audio_path)
vocal_audio = self.load_audio(vocal_path)
bgm_audio = full_audio - vocal_audio
return full_audio, vocal_audio, bgm_audio
if __name__ == "__main__":
torch.backends.cudnn.enabled = False
OmegaConf.register_new_resolver("eval", lambda x: eval(x))
OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx])
OmegaConf.register_new_resolver("get_fname", lambda: os.path.splitext(os.path.basename(sys.argv[1]))[0])
OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x)))
np.random.seed(int(time.time()))
ckpt_path = sys.argv[1]
input_jsonl = sys.argv[2]
save_dir = sys.argv[3]
cfg_path = os.path.join(ckpt_path, 'config.yaml')
ckpt_path = os.path.join(ckpt_path, 'model.pt')
cfg = OmegaConf.load(cfg_path)
cfg.mode = 'inference'
max_duration = cfg.max_dur
# Define model or load pretrained model
model_light = CodecLM_PL(cfg, ckpt_path)
model_light = model_light.eval().cuda()
model_light.audiolm.cfg = cfg
model = CodecLM(name = "tmp",
lm = model_light.audiolm,
audiotokenizer = model_light.audio_tokenizer,
max_duration = max_duration,
seperate_tokenizer = model_light.seperate_tokenizer,
)
separator = Separator()
auto_prompt = torch.load('ckpt/prompt.pt')
merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
cfg_coef = 1.5 #25
temp = 0.9
top_k = 50
top_p = 0.0
record_tokens = True
record_window = 50
model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef,
top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window)
os.makedirs(save_dir, exist_ok=True)
os.makedirs(save_dir + "/audios", exist_ok=True)
os.makedirs(save_dir + "/jsonl", exist_ok=True)
with open(input_jsonl, "r") as fp:
lines = fp.readlines()
new_items = []
for line in lines:
item = json.loads(line)
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac"
lyric = item["gt_lyric"]
descriptions = item["descriptions"] if "descriptions" in item else None
# get prompt audio
if "prompt_audio_path" in item:
assert os.path.exists(item['prompt_audio_path']), f"prompt_audio_path {item['prompt_audio_path']} not found"
assert 'auto_prompt_audio_type' not in item, f"auto_prompt_audio_type and prompt_audio_path cannot be used together"
pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path'])
melody_is_wav = True
elif "auto_prompt_audio_type" in item:
assert item["auto_prompt_audio_type"] in auto_prompt_type, f"auto_prompt_audio_type {item['auto_prompt_audio_type']} not found"
if item["auto_prompt_audio_type"] == "Auto":
prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
else:
prompt_token = auto_prompt[item["auto_prompt_audio_type"]][np.random.randint(0, len(auto_prompt[item["auto_prompt_audio_type"]]))]
pmt_wav = prompt_token[:,[0],:]
vocal_wav = prompt_token[:,[1],:]
bgm_wav = prompt_token[:,[2],:]
melody_is_wav = False
else:
pmt_wav = None
vocal_wav = None
bgm_wav = None
melody_is_wav = True
generate_inp = {
'lyrics': [lyric.replace(" ", " ")],
'descriptions': [descriptions],
'melody_wavs': pmt_wav,
'vocal_wavs': vocal_wav,
'bgm_wavs': bgm_wav,
'melody_is_wav': melody_is_wav,
}
start_time = time.time()
with torch.autocast(device_type="cuda", dtype=torch.float16):
tokens = model.generate(**generate_inp, return_tokens=True)
mid_time = time.time()
with torch.no_grad():
if melody_is_wav:
wav_seperate = model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
else:
wav_seperate = model.generate_audio(tokens)
end_time = time.time()
torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate)
print(f"process{item['idx']}, lm cost {mid_time - start_time}s, diffusion cost {end_time - mid_time}")
item["idx"] = f"{item['idx']}"
item["wav_path"] = target_wav_name
new_items.append(item)
src_jsonl_name = os.path.split(input_jsonl)[-1]
with open(f"{save_dir}/jsonl/{src_jsonl_name}.jsonl", "w", encoding='utf-8') as fw:
for item in new_items:
fw.writelines(json.dumps(item, ensure_ascii=False)+"\n")