SongGeneration / codeclm /tokenizer /Flow1dVAE /extract_codes_stereo_7_1x4.py
hainazhu
Add application file
258fd02
import torch,torchaudio
import os,sys,json
from tqdm import tqdm
#from codeclm_song_v1.codeclm.semantic_extractor.SpeechDecoder_v01.generate import Tango
from generate_4rvq import Tango
import kaldiio
from kaldiio import WriteHelper
if __name__ == "__main__":
# Define Model
json_path = sys.argv[1]
outdir = sys.argv[2]
mus_infos = []
with open(json_path) as f:
for line in f:
item = json.loads(line)
mus_infos.append(item)
tango = Tango(model_path = './saved/model_4rvq/model_2_fixed.safetensors', rvq_num=4)
# Feature extraction loop
# for i in tqdm(range(2000)):
with WriteHelper('ark,scp:{}/token.ark,{}/token.scp'.format(outdir, outdir), write_function="pickle") as writer:
print('ark,scp:{}/token.ark,{}/token.scp'.format(outdir, outdir))
for item in tqdm(mus_infos):
try:
# if True:
idx = item['idx']
# print(idx)
with torch.autocast(device_type="cuda", dtype=torch.float16):
if(os.path.exists(item['path'])):
codes = tango.file2code(item['path'])
else:
codes = tango.file2code('/mnt/share/' + item['path'])
writer(str(idx), codes.cpu())
except:
print(item['path'])
continue
# idx = item['idx']
# # print(idx)
# with torch.autocast(device_type="cuda", dtype=torch.float16):
# codes = tango.file2code(item['path'])
# writer(str(idx), codes.cpu())