Spaces:
Running
on
L40S
Running
on
L40S
import re | |
import sys | |
import json | |
from torch.utils.data import Dataset | |
import torchaudio | |
from torchaudio.functional import resample | |
import torch | |
import numpy as np | |
from torch.nn.utils.rnn import pad_sequence | |
def check_lryics(lyric): | |
_FILTER_STRING = [ | |
'作词', '作曲', '编曲', '【', '策划', | |
'录音', '混音', '母带', ':', '制作', | |
'版权', '校对', '演奏', '制作', '伴奏' | |
] | |
for item in _FILTER_STRING: | |
if item in lyric: | |
return True | |
return False | |
def process_lyrics(lines): | |
lyric_part = [] | |
timestamp_part = [] | |
timestamp_pattern = re.compile(r'\[\d+:\d+(\.\d+)?\]') | |
for i, line in enumerate(lines): | |
# 删除前几行的特定信息 | |
if i<10 and check_lryics(line): | |
continue | |
# 检查是否包含有效的时间戳和歌词内容 | |
if timestamp_pattern.match(line): | |
timestamp_end = line.rfind(']') | |
lyrics = line[timestamp_end + 1:].strip() | |
timestamps = line[:timestamp_end + 1] | |
if ':' in lyrics: | |
if len(lyrics.split(":")[0]) <=5: | |
lyrics = "".join(lyrics.split(":")[1:]) | |
# if lyrics: # 确保歌词部分不是空的 | |
# lyric_part.append(lyrics) | |
# timestamp_part.append(timestamps) | |
# print(processed_lyrics) | |
return timestamp_part, lyric_part | |
def get_timestamps(timestamp_part): | |
# 转换为秒 | |
timestamps = [] | |
for line in timestamp_part: | |
match = re.match(r'\[(\d+):(\d+)(\.\d+)?\]', line) | |
if match: | |
minutes = int(match.group(1)) | |
seconds = float(match.group(2)) | |
millis = float(match.group(3)) if match.group(3) else 0 | |
total_seconds = minutes * 60 + seconds + millis | |
timestamps.append(total_seconds) | |
return timestamps | |
def process_lyrics_lrc(lyrics): | |
timestamp_part, lyric_part = process_lyrics(lyrics) | |
# print(timestamp_part) | |
# print(lyric_part) | |
timestamps = get_timestamps(timestamp_part) | |
# print(timestamps) | |
if len(timestamps) == 0: | |
# print(f'{lyric_path}') | |
return [] | |
slice_start = timestamps[0] | |
slice_start_idx = 0 | |
output_list = [] | |
for i in range(1, len(timestamps)): | |
# 如果累积时间超过30秒,则进行切分, 如果整体小于30s, 整句会被丢掉 | |
if timestamps[i] - slice_start > 30: | |
output_list.append(f'[{str(slice_start)}:{str(timestamps[i])}]' + ", ".join(lyric_part[slice_start_idx:i])) | |
slice_start = timestamps[i] | |
slice_start_idx = i | |
return output_list | |
def process_lyrics_yrc(lyrics): | |
timestamps, lyric_part = extract_lrc(lyrics) | |
# timestamp_part, lyric_part = process_lyrics(lyrics) | |
# import pdb; pdb.set_trace() | |
# print(timestamp_part) | |
# print(lyric_part) | |
# timestamps = get_timestamps(timestamp_part) | |
# print(timestamps) | |
if len(timestamps) == 0: | |
# print(f'{lyric_path}') | |
return [] | |
slice_start = timestamps[0] | |
slice_start_idx = 0 | |
output_list = [] | |
for i in range(1, len(timestamps)): | |
# 如果累积时间超过30秒,则进行切分 | |
if timestamps[i] - slice_start > 30: | |
output_list.append(f'[{str(slice_start)}:{str(timestamps[i])}]' + ", ".join(lyric_part[slice_start_idx:i])) | |
slice_start = timestamps[i] | |
slice_start_idx = i | |
# import pdb; pdb.set_trace() | |
return output_list | |
def extract_lrc(lyrics): | |
timestamp_part, lyric_part = [], [] | |
for i, text in enumerate(lyrics): | |
# 提取中括号内的内容 | |
bracket_content = re.search(r'\[(.*?)\]', text).group(1) | |
bracket_content = bracket_content.split(',') | |
# 提取小括号内的内容 | |
parentheses_content = re.findall(r'\((.*?)\)', text) | |
# 提取其他内容 | |
other_content = re.sub(r'\[(.*?)\]|\((.*?)\)', '', text).strip() | |
# 数据怎么处理? | |
if i<10 and check_lryics(other_content): | |
continue | |
timestamp_part.append(float(bracket_content[0])/1000) | |
lyric_part.append(other_content) | |
return timestamp_part, lyric_part | |
class WYYSongDataset(Dataset): | |
def __init__(self, | |
metadata_path:str, | |
sr:int = 0, | |
use_lang = ['en', 'zh-cn'], | |
num_examples = -1, | |
max_dur = 20, | |
pad_to_max= True, | |
): | |
self.sr = sr | |
self.use_lang = use_lang | |
self._load_metadata(metadata_path) | |
self.max_dur = max_dur | |
self.pad_to_max = pad_to_max | |
# buffer | |
self.lyric_buffer = {} | |
if(num_examples<=0): | |
self.dataset_len = len(self.data) | |
self.random_slc = False | |
else: | |
self.dataset_len = num_examples | |
self.random_slc = True | |
# 读取jsonl文件 | |
def _load_metadata(self, metadata_path): | |
with open(metadata_path) as fp: | |
lines = fp.readlines() | |
self.data = [] | |
for line in lines: | |
item = json.loads(line) | |
if '伴奏' not in item['path']: | |
# if "lang_type" in item and item['lang_type'] == 'en': | |
if "lang_type" in item: | |
self.data.append(item) | |
def __len__(self): | |
return self.dataset_len | |
def __getitem__(self, idx): | |
try_cnt = 0 | |
while True: | |
if(self.random_slc): | |
idx = np.random.randint(0, len(self.data)) | |
yrc_lyrics = [] | |
lrc_lyrics = [] | |
try: | |
info = self.data[idx] | |
# audio path | |
path = info["path"] | |
lang_type = info["lang_type"] | |
if info["lang_type"] == 'en': | |
lyrics = info['lyrics'] | |
else: | |
lyrics = info['lyrics_phone'] | |
# 随机选取一个lyric段落 | |
ly_id = torch.randint(low=1, high=len(lyrics), size=(1,))[0].item() | |
lyric = lyrics[ly_id].strip() | |
st, et, lyric = self.parse_lyric(lyric) | |
lyric = lyric.replace("\xa0", " ") | |
lyric = " ".join(lyric.split()) | |
assert et - st < self.max_dur | |
if info["lang_type"] == 'en': | |
# print(len(lyric.split())/(et-st)) | |
assert 6 > len(lyric.split())/(et-st) > 1 | |
else: | |
# print(len(lyric.split())/(et-st)) | |
lyric = lyric.replace("-", "") | |
assert 6 > len(lyric.split())/(et-st) > 1 | |
# 读取音频文件 | |
cur_sample_rate = torchaudio.info(path).sample_rate | |
offset = int(cur_sample_rate*st) | |
num_frames = int(cur_sample_rate * (et -st)) | |
chunk, _ = torchaudio.load(path, frame_offset=offset, num_frames=num_frames) | |
# chunk = torch.zeros(1, 48000*15) | |
# 随机选取一个channel | |
if(chunk.shape[0]>1): | |
chunk = chunk[torch.randint(chunk.shape[0], size=(1,)),:].float() | |
else: | |
chunk = chunk[[0],:].float() | |
if(cur_sample_rate!=self.sr): | |
# print('a:',cur_sample_rate,chunk.shape) | |
chunk = torchaudio.functional.resample(chunk, cur_sample_rate, self.sr) | |
if self.pad_to_max: | |
chunk = self.pad_2d_tensor(chunk, int(self.max_dur * self.sr), 0) | |
return chunk, lyric, et-st, path, lang_type | |
except: | |
# print("Error loadding ", info["path"]) | |
try_cnt += 1 | |
idx = np.random.randint(0, len(self.data)) | |
if(try_cnt>20): | |
raise FileNotFoundError() | |
def parse_lyric(self, lyric): | |
pattern = r'\[(\d+\.\d+):(\d+\.\d+)\](.*)' | |
match = re.search(pattern, lyric) | |
start_time = float(match.group(1)) | |
end_time = float(match.group(2)) | |
content = match.group(3) | |
return start_time, end_time, content | |
def pad_2d_tensor(self, x, max_len, pad_id): | |
# 获取输入 tensor 的形状 | |
batch_size, seq_len = x.size() | |
max_len = max(max_len, seq_len) | |
# 计算需要填充的长度 | |
pad_len = max_len - seq_len | |
# 如果需要填充 | |
if pad_len > 0: | |
# 创建填充 tensor | |
pad_tensor = torch.full((batch_size, pad_len), pad_id, dtype=x.dtype, device=x.device) | |
# 沿第二个维度(列)连接输入 tensor 和填充 tensor | |
padded_tensor = torch.cat([x, pad_tensor], dim=1) | |
else: | |
# 如果不需要填充,直接返回输入 tensor | |
padded_tensor = x | |
return padded_tensor | |
def collect_data(data_list): | |
audios = pad_sequence([data[0].t() for data in data_list], batch_first=True, padding_value=0).transpose(1,2) | |
lyrics = [data[1] for data in data_list] | |
st_et = [data[2] for data in data_list] | |
paths = [data[3] for data in data_list] | |
lang_types = [data[4] for data in data_list] | |
return audios, lyrics, st_et, lang_types | |
# return audios, lyrics, st_et | |
def build_dataset(): | |
train_dataset = WYYSongDataset( | |
metadata_path = "train.jsonl", | |
sr = 48000, | |
use_lang = ['zh-cn', 'en'], | |
num_examples = 10*10000 | |
) | |
valid_dataset = WYYSongDataset( | |
metadata_path = "valid.jsonl", | |
sr = 48000, | |
use_lang = ['zh-cn', 'en'], | |
num_examples = 500 | |
) | |
return train_dataset, valid_dataset | |