hainazhu
Add application file
258fd02
import re
import sys
import json
from torch.utils.data import Dataset
import torchaudio
from torchaudio.functional import resample
import torch
import numpy as np
from torch.nn.utils.rnn import pad_sequence
def check_lryics(lyric):
_FILTER_STRING = [
'作词', '作曲', '编曲', '【', '策划',
'录音', '混音', '母带', ':', '制作',
'版权', '校对', '演奏', '制作', '伴奏'
]
for item in _FILTER_STRING:
if item in lyric:
return True
return False
def process_lyrics(lines):
lyric_part = []
timestamp_part = []
timestamp_pattern = re.compile(r'\[\d+:\d+(\.\d+)?\]')
for i, line in enumerate(lines):
# 删除前几行的特定信息
if i<10 and check_lryics(line):
continue
# 检查是否包含有效的时间戳和歌词内容
if timestamp_pattern.match(line):
timestamp_end = line.rfind(']')
lyrics = line[timestamp_end + 1:].strip()
timestamps = line[:timestamp_end + 1]
if ':' in lyrics:
if len(lyrics.split(":")[0]) <=5:
lyrics = "".join(lyrics.split(":")[1:])
# if lyrics: # 确保歌词部分不是空的
# lyric_part.append(lyrics)
# timestamp_part.append(timestamps)
# print(processed_lyrics)
return timestamp_part, lyric_part
def get_timestamps(timestamp_part):
# 转换为秒
timestamps = []
for line in timestamp_part:
match = re.match(r'\[(\d+):(\d+)(\.\d+)?\]', line)
if match:
minutes = int(match.group(1))
seconds = float(match.group(2))
millis = float(match.group(3)) if match.group(3) else 0
total_seconds = minutes * 60 + seconds + millis
timestamps.append(total_seconds)
return timestamps
def process_lyrics_lrc(lyrics):
timestamp_part, lyric_part = process_lyrics(lyrics)
# print(timestamp_part)
# print(lyric_part)
timestamps = get_timestamps(timestamp_part)
# print(timestamps)
if len(timestamps) == 0:
# print(f'{lyric_path}')
return []
slice_start = timestamps[0]
slice_start_idx = 0
output_list = []
for i in range(1, len(timestamps)):
# 如果累积时间超过30秒,则进行切分, 如果整体小于30s, 整句会被丢掉
if timestamps[i] - slice_start > 30:
output_list.append(f'[{str(slice_start)}:{str(timestamps[i])}]' + ", ".join(lyric_part[slice_start_idx:i]))
slice_start = timestamps[i]
slice_start_idx = i
return output_list
def process_lyrics_yrc(lyrics):
timestamps, lyric_part = extract_lrc(lyrics)
# timestamp_part, lyric_part = process_lyrics(lyrics)
# import pdb; pdb.set_trace()
# print(timestamp_part)
# print(lyric_part)
# timestamps = get_timestamps(timestamp_part)
# print(timestamps)
if len(timestamps) == 0:
# print(f'{lyric_path}')
return []
slice_start = timestamps[0]
slice_start_idx = 0
output_list = []
for i in range(1, len(timestamps)):
# 如果累积时间超过30秒,则进行切分
if timestamps[i] - slice_start > 30:
output_list.append(f'[{str(slice_start)}:{str(timestamps[i])}]' + ", ".join(lyric_part[slice_start_idx:i]))
slice_start = timestamps[i]
slice_start_idx = i
# import pdb; pdb.set_trace()
return output_list
def extract_lrc(lyrics):
timestamp_part, lyric_part = [], []
for i, text in enumerate(lyrics):
# 提取中括号内的内容
bracket_content = re.search(r'\[(.*?)\]', text).group(1)
bracket_content = bracket_content.split(',')
# 提取小括号内的内容
parentheses_content = re.findall(r'\((.*?)\)', text)
# 提取其他内容
other_content = re.sub(r'\[(.*?)\]|\((.*?)\)', '', text).strip()
# 数据怎么处理?
if i<10 and check_lryics(other_content):
continue
timestamp_part.append(float(bracket_content[0])/1000)
lyric_part.append(other_content)
return timestamp_part, lyric_part
class WYYSongDataset(Dataset):
def __init__(self,
metadata_path:str,
sr:int = 0,
use_lang = ['en', 'zh-cn'],
num_examples = -1,
max_dur = 20,
pad_to_max= True,
):
self.sr = sr
self.use_lang = use_lang
self._load_metadata(metadata_path)
self.max_dur = max_dur
self.pad_to_max = pad_to_max
# buffer
self.lyric_buffer = {}
if(num_examples<=0):
self.dataset_len = len(self.data)
self.random_slc = False
else:
self.dataset_len = num_examples
self.random_slc = True
# 读取jsonl文件
def _load_metadata(self, metadata_path):
with open(metadata_path) as fp:
lines = fp.readlines()
self.data = []
for line in lines:
item = json.loads(line)
if '伴奏' not in item['path']:
# if "lang_type" in item and item['lang_type'] == 'en':
if "lang_type" in item:
self.data.append(item)
def __len__(self):
return self.dataset_len
def __getitem__(self, idx):
try_cnt = 0
while True:
if(self.random_slc):
idx = np.random.randint(0, len(self.data))
yrc_lyrics = []
lrc_lyrics = []
try:
info = self.data[idx]
# audio path
path = info["path"]
lang_type = info["lang_type"]
if info["lang_type"] == 'en':
lyrics = info['lyrics']
else:
lyrics = info['lyrics_phone']
# 随机选取一个lyric段落
ly_id = torch.randint(low=1, high=len(lyrics), size=(1,))[0].item()
lyric = lyrics[ly_id].strip()
st, et, lyric = self.parse_lyric(lyric)
lyric = lyric.replace("\xa0", " ")
lyric = " ".join(lyric.split())
assert et - st < self.max_dur
if info["lang_type"] == 'en':
# print(len(lyric.split())/(et-st))
assert 6 > len(lyric.split())/(et-st) > 1
else:
# print(len(lyric.split())/(et-st))
lyric = lyric.replace("-", "")
assert 6 > len(lyric.split())/(et-st) > 1
# 读取音频文件
cur_sample_rate = torchaudio.info(path).sample_rate
offset = int(cur_sample_rate*st)
num_frames = int(cur_sample_rate * (et -st))
chunk, _ = torchaudio.load(path, frame_offset=offset, num_frames=num_frames)
# chunk = torch.zeros(1, 48000*15)
# 随机选取一个channel
if(chunk.shape[0]>1):
chunk = chunk[torch.randint(chunk.shape[0], size=(1,)),:].float()
else:
chunk = chunk[[0],:].float()
if(cur_sample_rate!=self.sr):
# print('a:',cur_sample_rate,chunk.shape)
chunk = torchaudio.functional.resample(chunk, cur_sample_rate, self.sr)
if self.pad_to_max:
chunk = self.pad_2d_tensor(chunk, int(self.max_dur * self.sr), 0)
return chunk, lyric, et-st, path, lang_type
except:
# print("Error loadding ", info["path"])
try_cnt += 1
idx = np.random.randint(0, len(self.data))
if(try_cnt>20):
raise FileNotFoundError()
def parse_lyric(self, lyric):
pattern = r'\[(\d+\.\d+):(\d+\.\d+)\](.*)'
match = re.search(pattern, lyric)
start_time = float(match.group(1))
end_time = float(match.group(2))
content = match.group(3)
return start_time, end_time, content
def pad_2d_tensor(self, x, max_len, pad_id):
# 获取输入 tensor 的形状
batch_size, seq_len = x.size()
max_len = max(max_len, seq_len)
# 计算需要填充的长度
pad_len = max_len - seq_len
# 如果需要填充
if pad_len > 0:
# 创建填充 tensor
pad_tensor = torch.full((batch_size, pad_len), pad_id, dtype=x.dtype, device=x.device)
# 沿第二个维度(列)连接输入 tensor 和填充 tensor
padded_tensor = torch.cat([x, pad_tensor], dim=1)
else:
# 如果不需要填充,直接返回输入 tensor
padded_tensor = x
return padded_tensor
def collect_data(data_list):
audios = pad_sequence([data[0].t() for data in data_list], batch_first=True, padding_value=0).transpose(1,2)
lyrics = [data[1] for data in data_list]
st_et = [data[2] for data in data_list]
paths = [data[3] for data in data_list]
lang_types = [data[4] for data in data_list]
return audios, lyrics, st_et, lang_types
# return audios, lyrics, st_et
def build_dataset():
train_dataset = WYYSongDataset(
metadata_path = "train.jsonl",
sr = 48000,
use_lang = ['zh-cn', 'en'],
num_examples = 10*10000
)
valid_dataset = WYYSongDataset(
metadata_path = "valid.jsonl",
sr = 48000,
use_lang = ['zh-cn', 'en'],
num_examples = 500
)
return train_dataset, valid_dataset