hainazhu
Add application file
258fd02
import yaml
import random
import inspect
import numpy as np
from tqdm import tqdm
import typing as tp
from abc import ABC
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from einops import repeat
from tools.torch_tools import wav_to_fbank
import diffusers
from diffusers.utils.torch_utils import randn_tensor
from diffusers import DDPMScheduler
from models.transformer_2d_flow import Transformer2DModel
from transformers import AutoFeatureExtractor, Wav2Vec2BertModel,HubertModel
# from tools.get_mulan import get_mulan
from third_party.wespeaker.extract_embd import XVECModel
# from libs.rvq2 import RVQEmbedding
from libs.rvq.descript_quantize3_4layer_freezelayer1 import ResidualVectorQuantize
from models_gpt.models.gpt2_rope2_time_new_correct_mask_noncasual_reflow import GPT2Model
from models_gpt.models.gpt2_config import GPT2Config
from torch.cuda.amp import autocast
from our_MERT_BESTRQ.test import load_model
class HubertModelWithFinalProj(HubertModel):
def __init__(self, config):
super().__init__(config)
# The final projection layer is only used for backward compatibility.
# Following https://github.com/auspicious3000/contentvec/issues/6
# Remove this layer is necessary to achieve the desired outcome.
print("hidden_size:",config.hidden_size)
print("classifier_proj_size:",config.classifier_proj_size)
self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)
class SampleProcessor(torch.nn.Module):
def project_sample(self, x: torch.Tensor):
"""Project the original sample to the 'space' where the diffusion will happen."""
"""Project back from diffusion space to the actual sample space."""
return z
class Feature1DProcessor(SampleProcessor):
def __init__(self, dim: int = 100, power_std = 1., \
num_samples: int = 100_000, cal_num_frames: int = 600):
super().__init__()
self.num_samples = num_samples
self.dim = dim
self.power_std = power_std
self.cal_num_frames = cal_num_frames
self.register_buffer('counts', torch.zeros(1))
self.register_buffer('sum_x', torch.zeros(dim))
self.register_buffer('sum_x2', torch.zeros(dim))
self.register_buffer('sum_target_x2', torch.zeros(dim))
self.counts: torch.Tensor
self.sum_x: torch.Tensor
self.sum_x2: torch.Tensor
@property
def mean(self):
mean = self.sum_x / self.counts
if(self.counts < 10):
mean = torch.zeros_like(mean)
return mean
@property
def std(self):
std = (self.sum_x2 / self.counts - self.mean**2).clamp(min=0).sqrt()
if(self.counts < 10):
std = torch.ones_like(std)
return std
@property
def target_std(self):
return 1
def project_sample(self, x: torch.Tensor):
assert x.dim() == 3
if self.counts.item() < self.num_samples:
self.counts += len(x)
self.sum_x += x[:,:,0:self.cal_num_frames].mean(dim=(2,)).sum(dim=0)
self.sum_x2 += x[:,:,0:self.cal_num_frames].pow(2).mean(dim=(2,)).sum(dim=0)
rescale = (self.target_std / self.std.clamp(min=1e-12)) ** self.power_std # same output size
x = (x - self.mean.view(1, -1, 1)) * rescale.view(1, -1, 1)
return x
def return_sample(self, x: torch.Tensor):
assert x.dim() == 3
rescale = (self.std / self.target_std) ** self.power_std
# print(rescale, self.mean)
x = x * rescale.view(1, -1, 1) + self.mean.view(1, -1, 1)
return x
def pad_or_tunc_tolen(prior_text_encoder_hidden_states, prior_text_mask, prior_prompt_embeds, len_size=77):
if(prior_text_encoder_hidden_states.shape[1]<len_size):
prior_text_encoder_hidden_states = torch.cat([prior_text_encoder_hidden_states, \
torch.zeros(prior_text_mask.shape[0], len_size-prior_text_mask.shape[1], \
prior_text_encoder_hidden_states.shape[2], device=prior_text_mask.device, \
dtype=prior_text_encoder_hidden_states.dtype)],1)
prior_text_mask = torch.cat([prior_text_mask, torch.zeros(prior_text_mask.shape[0], len_size-prior_text_mask.shape[1], device=prior_text_mask.device, dtype=prior_text_mask.dtype)],1)
else:
prior_text_encoder_hidden_states = prior_text_encoder_hidden_states[:,0:len_size]
prior_text_mask = prior_text_mask[:,0:len_size]
prior_text_encoder_hidden_states = prior_text_encoder_hidden_states.permute(0,2,1).contiguous()
return prior_text_encoder_hidden_states, prior_text_mask, prior_prompt_embeds
class BASECFM(torch.nn.Module, ABC):
def __init__(
self,
estimator,
mlp,
ssl_layer
):
super().__init__()
self.sigma_min = 1e-4
self.estimator = estimator
self.mlp = mlp
self.ssl_layer = ssl_layer
@torch.inference_mode()
def forward(self, mu, n_timesteps, temperature=1.0):
"""Forward diffusion
Args:
mu (torch.Tensor): output of encoder
shape: (batch_size, n_channels, mel_timesteps, n_feats)
n_timesteps (int): number of diffusion steps
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
Returns:
sample: generated mel-spectrogram
shape: (batch_size, n_channels, mel_timesteps, n_feats)
"""
z = torch.randn_like(mu) * temperature
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
return self.solve_euler(z, t_span=t_span)
def solve_euler(self, x, latent_mask_input,incontext_x, incontext_length, t_span, mu,attention_mask, guidance_scale):
"""
Fixed euler solver for ODEs.
Args:
x (torch.Tensor): random noise
t_span (torch.Tensor): n_timesteps interpolated
shape: (n_timesteps + 1,)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_channels, mel_timesteps, n_feats)
"""
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
noise = x.clone()
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
# Or in future might add like a return_all_steps flag
sol = []
for step in tqdm(range(1, len(t_span))):
print("incontext_x.shape:",incontext_x.shape)
print("noise.shape:",noise.shape)
print("t.shape:",t.shape)
x[:,0:incontext_length,:] = (1 - (1 - self.sigma_min) * t) * noise[:,0:incontext_length,:] + t * incontext_x[:,0:incontext_length,:]
if(guidance_scale > 1.0):
model_input = torch.cat([ \
torch.cat([latent_mask_input, latent_mask_input], 0), \
torch.cat([incontext_x, incontext_x], 0), \
torch.cat([torch.zeros_like(mu), mu], 0), \
torch.cat([x, x], 0), \
], 2)
timestep=t.unsqueeze(-1).repeat(2)
dphi_dt = self.estimator(inputs_embeds=model_input, attention_mask=attention_mask,time_step=timestep).last_hidden_state
dphi_dt_uncond, dhpi_dt_cond = dphi_dt.chunk(2,0)
dphi_dt = dphi_dt_uncond + guidance_scale * (dhpi_dt_cond - dphi_dt_uncond)
else:
model_input = torch.cat([latent_mask_input, incontext_x, mu, x], 2)
timestep=t.unsqueeze(-1)
dphi_dt = self.estimator(inputs_embeds=model_input, attention_mask=attention_mask,time_step=timestep).last_hidden_state
dphi_dt = dphi_dt[: ,:, -x.shape[2]:]
print("dphi_dt.shape:",dphi_dt.shape)
print("x.shape:",x.shape)
x = x + dt * dphi_dt
t = t + dt
sol.append(x)
if step < len(t_span) - 1:
dt = t_span[step + 1] - t
return sol[-1]
def projection_loss(self,hidden_proj, bestrq_emb):
bsz = hidden_proj.shape[0]
hidden_proj_normalized = F.normalize(hidden_proj, dim=-1)
bestrq_emb_normalized = F.normalize(bestrq_emb, dim=-1)
proj_loss = -(hidden_proj_normalized * bestrq_emb_normalized).sum(dim=-1)
proj_loss = 1+proj_loss.mean()
return proj_loss
def compute_loss(self, x1, mu, latent_masks,attention_mask,wav2vec_embeds, validation_mode=False):
"""Computes diffusion loss
Args:
x1 (torch.Tensor): Target
shape: (batch_size, n_channels, mel_timesteps, n_feats)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_channels, mel_timesteps, n_feats)
Returns:
loss: conditional flow matching loss
y: conditional flow
shape: (batch_size, n_channels, mel_timesteps, n_feats)
"""
b = mu[0].shape[0]
len_x = x1.shape[2]
# random timestep
if(validation_mode):
t = torch.ones([b, 1, 1], device=mu[0].device, dtype=mu[0].dtype) * 0.5
else:
t = torch.rand([b, 1, 1], device=mu[0].device, dtype=mu[0].dtype)
# sample noise p(x_0)
z = torch.randn_like(x1)
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
u = x1 - (1 - self.sigma_min) * z
# print("y.shape:",y.shape)
#self.unet(inputs_embeds=model_input, attention_mask=attention_mask,encoder_hidden_states=text_embedding,encoder_attention_mask=txt_attn_mask,time_step=timesteps).last_hidden_state
model_input = torch.cat([*mu,y], 2)
t=t.squeeze(-1).squeeze(-1)
# print("model_input.shape:",model_input.shape)
# print("attention_mask.shape:",attention_mask.shape)
out = self.estimator(inputs_embeds=model_input, attention_mask=attention_mask,time_step=t,output_hidden_states=True)
hidden_layer = out.hidden_states[self.ssl_layer]
hidden_proj = self.mlp(hidden_layer)
# print("hidden_proj.shape:",hidden_proj.shape)
# print("mert_emb.shape:",mert_emb.shape)
# exit()
out = out.last_hidden_state
out=out[:,:,-len_x:]
# out=self.proj_out(out)
weight = (latent_masks > 1.5).unsqueeze(-1).repeat(1, 1, out.shape[-1]).float() + (latent_masks < 0.5).unsqueeze(-1).repeat(1, 1, out.shape[-1]).float() * 0.01
# print("out.shape",out.shape)
# print("u.shape",u.shape)
loss_re = F.mse_loss(out * weight, u * weight, reduction="sum") / weight.sum()
# print("hidden_proj.shape:",hidden_proj.shape)
# print("wav2vec_embeds.shape:",wav2vec_embeds.shape)
loss_cos = self.projection_loss(hidden_proj, wav2vec_embeds)
loss = loss_re + loss_cos * 0.5
# print("loss_cos:",loss_cos,loss_cos.device)
print("loss:",loss,loss.device)
# exit()
return loss, loss_re, loss_cos
class PromptCondAudioDiffusion(nn.Module):
def __init__(
self,
num_channels,
unet_model_name=None,
unet_model_config_path=None,
snr_gamma=None,
hubert_layer=None,
ssl_layer=None,
uncondition=True,
out_paint=False,
):
super().__init__()
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"
self.unet_model_name = unet_model_name
self.unet_model_config_path = unet_model_config_path
self.snr_gamma = snr_gamma
self.uncondition = uncondition
self.num_channels = num_channels
self.hubert_layer = hubert_layer
self.ssl_layer = ssl_layer
# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview
self.normfeat = Feature1DProcessor(dim=64)
self.sample_rate = 48000
self.num_samples_perseg = self.sample_rate * 20 // 1000
self.rsp48toclap = torchaudio.transforms.Resample(48000, 24000)
self.rsq48towav2vec = torchaudio.transforms.Resample(48000, 16000)
# self.wav2vec = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0", trust_remote_code=True)
# self.wav2vec_processor = AutoFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0", trust_remote_code=True)
self.bestrq = load_model(
model_dir='path/to/our-MERT/mert_fairseq',
checkpoint_dir='checkpoint-120000.pt',
)
self.rsq48tobestrq = torchaudio.transforms.Resample(48000, 24000)
self.rsq48tohubert = torchaudio.transforms.Resample(48000, 16000)
for v in self.bestrq.parameters():v.requires_grad = False
self.rvq_bestrq_emb = ResidualVectorQuantize(input_dim = 1024, n_codebooks = 4, codebook_size = 16_384, codebook_dim = 32, quantizer_dropout = 0.0, stale_tolerance=200)
# for v in self.rvq_bestrq_emb.parameters():
# print(v)
freeze_parameters='quantizers.0'
for name, param in self.rvq_bestrq_emb.named_parameters():
if freeze_parameters in name:
param.requires_grad = False
print("Freezing RVQ parameters:", name)
self.hubert = HubertModelWithFinalProj.from_pretrained("huggingface_cache/models--lengyue233--content-vec-best/snapshots/c0b9ba13db21beaa4053faae94c102ebe326fd68")
for v in self.hubert.parameters():v.requires_grad = False
self.zero_cond_embedding1 = nn.Parameter(torch.randn(32*32,))
# self.xvecmodel = XVECModel()
config = GPT2Config(n_positions=1000,n_layer=39,n_head=30,n_embd=1200)
unet = GPT2Model(config)
mlp = nn.Sequential(
nn.Linear(1200, 1024),
nn.SiLU(),
nn.Linear(1024, 1024),
nn.SiLU(),
nn.Linear(1024, 768)
)
self.set_from = "random"
self.cfm_wrapper = BASECFM(unet, mlp,self.ssl_layer)
self.mask_emb = torch.nn.Embedding(3, 48)
print("Transformer initialized from pretrain.")
torch.cuda.empty_cache()
# self.unet.set_attn_processor(AttnProcessor2_0())
# self.unet.set_use_memory_efficient_attention_xformers(True)
# self.start_embedding = nn.Parameter(torch.randn(1,1024))
# self.end_embedding = nn.Parameter(torch.randn(1,1024))
def compute_snr(self, timesteps):
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = self.noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma) ** 2
return snr
def preprocess_audio(self, input_audios, threshold=0.9):
assert len(input_audios.shape) == 2, input_audios.shape
norm_value = torch.ones_like(input_audios[:,0])
max_volume = input_audios.abs().max(dim=-1)[0]
norm_value[max_volume>threshold] = max_volume[max_volume>threshold] / threshold
return input_audios/norm_value.unsqueeze(-1)
def extract_wav2vec_embeds(self, input_audios,output_len):
wav2vec_stride = 2
wav2vec_embeds = self.hubert(self.rsq48tohubert(input_audios), output_hidden_states=True).hidden_states # 1, 4096, 1024
# print(wav2vec_embeds)
# print("audio.shape:",input_audios.shape)
wav2vec_embeds_last=wav2vec_embeds[self.hubert_layer]
# print("wav2vec_embeds_last.shape:",wav2vec_embeds_last.shape)
wav2vec_embeds_last=torch.nn.functional.interpolate(wav2vec_embeds_last.permute(0, 2, 1), size=output_len, mode='linear', align_corners=False).permute(0, 2, 1)
return wav2vec_embeds_last
def extract_mert_embeds(self, input_audios):
prompt_stride = 3
inputs = self.clap_embd_extractor.mulan.audio.processor(self.rsp48toclap(input_audios), sampling_rate=self.clap_embd_extractor.mulan.audio.sr, return_tensors="pt")
input_values = inputs['input_values'].squeeze(0).to(input_audios.device, dtype = input_audios.dtype)
prompt_embeds = self.clap_embd_extractor.mulan.audio.model(input_values, output_hidden_states=True).hidden_states # batch_size, Time steps, 1024
mert_emb= prompt_embeds[-1]
mert_emb = torch.nn.functional.interpolate(mert_emb.permute(0, 2, 1), size=500, mode='linear', align_corners=False).permute(0, 2, 1)
return mert_emb
def extract_bestrq_embeds(self, input_audio_0,input_audio_1,layer):
self.bestrq.eval()
# print("audio shape:",input_audio_0.shape)
input_wav_mean = (input_audio_0 + input_audio_1) / 2.0
# print("input_wav_mean.shape:",input_wav_mean.shape)
# input_wav_mean = torch.randn(2,1720320*2).to(input_audio_0.device)
input_wav_mean = self.bestrq(self.rsq48tobestrq(input_wav_mean), features_only = True)
layer_results = input_wav_mean['layer_results']
# print("layer_results.shape:",layer_results[layer].shape)
bestrq_emb = layer_results[layer]
bestrq_emb = bestrq_emb.permute(0,2,1).contiguous()
#[b,t,1024] t=t/960
#35.84s->batch,896,1024
return bestrq_emb
def extract_spk_embeds(self, input_audios):
spk_embeds = self.xvecmodel(self.rsq48towav2vec(input_audios))
spk_embeds = self.spk_linear(spk_embeds).reshape(spk_embeds.shape[0], 16, 1, 32)
return spk_embeds
def extract_lyric_feats(self, lyric):
with torch.no_grad():
try:
text_encoder_hidden_states, text_mask, text_prompt_embeds = self.clap_embd_extractor(texts = lyric, return_one=False)
except:
text_encoder_hidden_states, text_mask, text_prompt_embeds = self.clap_embd_extractor(texts = [""] * len(lyric), return_one=False)
text_encoder_hidden_states = text_encoder_hidden_states.to(self.device)
text_mask = text_mask.to(self.device)
text_encoder_hidden_states, text_mask, text_prompt_embeds = \
pad_or_tunc_tolen(text_encoder_hidden_states, text_mask, text_prompt_embeds)
text_encoder_hidden_states = text_encoder_hidden_states.permute(0,2,1).contiguous()
return text_encoder_hidden_states, text_mask
def extract_energy_bar(self, input_audios):
if(input_audios.shape[-1] % self.num_samples_perseg > 0):
energy_bar = input_audios[:,:-1 * (input_audios.shape[-1] % self.num_samples_perseg)].reshape(input_audios.shape[0],-1,self.num_samples_perseg)
else:
energy_bar = input_audios.reshape(input_audios.shape[0],-1,self.num_samples_perseg)
energy_bar = (energy_bar.pow(2.0).mean(-1).sqrt() + 1e-6).log10() * 20 # B T
energy_bar = (energy_bar / 2.0 + 16).clamp(0,16).int()
energy_embedding = self.energy_embedding(energy_bar)
energy_embedding = energy_embedding.view(energy_embedding.shape[0], energy_embedding.shape[1] // 2, 2, 32).reshape(energy_embedding.shape[0], energy_embedding.shape[1] // 2, 64).permute(0,2,1) # b 128 t
return energy_embedding
def forward(self, input_audios, lyric, latents, latent_masks, validation_mode=False, \
additional_feats = ['spk', 'lyric'], \
train_rvq=True, train_ssl=False,layer=5):
if not hasattr(self,"device"):
self.device = input_audios.device
if not hasattr(self,"dtype"):
self.dtype = input_audios.dtype
device = self.device
input_audio_0 = input_audios[:,0,:]
input_audio_1 = input_audios[:,1,:]
input_audio_0 = self.preprocess_audio(input_audio_0)
input_audio_1 = self.preprocess_audio(input_audio_1)
input_audios_wav2vec = (input_audio_0 + input_audio_1) / 2.0
# energy_embedding = self.extract_energy_bar(input_audios)
# print("energy_embedding.shape:",energy_embedding.shape)
# with autocast(enabled=False):
if(train_ssl):
self.wav2vec.train()
wav2vec_embeds = self.extract_wav2vec_embeds(input_audios)
self.clap_embd_extractor.train()
prompt_embeds = self.extract_mert_embeds(input_audios)
if('spk' in additional_feats):
self.xvecmodel.train()
spk_embeds = self.extract_spk_embeds(input_audios).repeat(1,1,prompt_embeds.shape[-1]//2,1)
else:
with torch.no_grad():
with autocast(enabled=False):
bestrq_emb = self.extract_bestrq_embeds(input_audio_0,input_audio_1,layer)
# mert_emb = self.extract_mert_embeds(input_audios_mert)
wav2vec_embeds = self.extract_wav2vec_embeds(input_audios_wav2vec,bestrq_emb.shape[2])
bestrq_emb = bestrq_emb.detach()
if('lyric' in additional_feats):
text_encoder_hidden_states, text_mask = self.extract_lyric_feats(lyric)
else:
text_encoder_hidden_states, text_mask = None, None
if(train_rvq):
random_num=random.random()
if(random_num<0.6):
rvq_layer = 1
elif(random_num<0.8):
rvq_layer = 2
else:
rvq_layer = 4
quantized_bestrq_emb, _, _, commitment_loss_bestrq_emb, codebook_loss_bestrq_emb,_ = self.rvq_bestrq_emb(bestrq_emb,n_quantizers=rvq_layer) # b,d,t
else:
bestrq_emb = bestrq_emb.float()
self.rvq_bestrq_emb.eval()
# with autocast(enabled=False):
quantized_bestrq_emb, _, _, commitment_loss_bestrq_emb, codebook_loss_bestrq_emb,_ = self.rvq_bestrq_emb(bestrq_emb) # b,d,t
commitment_loss_bestrq_emb = commitment_loss_bestrq_emb.detach()
codebook_loss_bestrq_emb = codebook_loss_bestrq_emb.detach()
quantized_bestrq_emb = quantized_bestrq_emb.detach()
commitment_loss = commitment_loss_bestrq_emb
codebook_loss = codebook_loss_bestrq_emb
alpha=1
quantized_bestrq_emb = quantized_bestrq_emb * alpha + bestrq_emb * (1-alpha)
# print("quantized_bestrq_emb.shape:",quantized_bestrq_emb.shape)
# print("latent_masks.shape:",latent_masks.shape)
# quantized_bestrq_emb = torch.nn.functional.interpolate(quantized_bestrq_emb, size=(int(quantized_bestrq_emb.shape[-1]/999*937),), mode='linear', align_corners=True)
scenario = np.random.choice(['start_seg', 'other_seg'])
if(scenario == 'other_seg'):
for binx in range(input_audios.shape[0]):
# latent_masks[binx,0:64] = 1
latent_masks[binx,0:random.randint(64,128)] = 1
quantized_bestrq_emb = quantized_bestrq_emb.permute(0,2,1).contiguous()
# print("quantized_bestrq_emb.shape:",quantized_bestrq_emb.shape)
# print("quantized_bestrq_emb1.shape:",quantized_bestrq_emb.shape)
# print("latent_masks.shape:",latent_masks.shape)
quantized_bestrq_emb = (latent_masks > 0.5).unsqueeze(-1) * quantized_bestrq_emb \
+ (latent_masks < 0.5).unsqueeze(-1) * self.zero_cond_embedding1.reshape(1,1,1024)
if self.uncondition:
mask_indices = [k for k in range(quantized_bestrq_emb.shape[0]) if random.random() < 0.1]
if len(mask_indices) > 0:
quantized_bestrq_emb[mask_indices] = 0
# print("latents.shape:",latents.shape)
latents = latents.permute(0,2,1).contiguous()
latents = self.normfeat.project_sample(latents)
latents = latents.permute(0,2,1).contiguous()
incontext_latents = latents * ((latent_masks > 0.5) * (latent_masks < 1.5)).unsqueeze(-1).float()
attention_mask=(latent_masks > 0.5)
B, L = attention_mask.size()
attention_mask = attention_mask.view(B, 1, L)
attention_mask = attention_mask * attention_mask.transpose(-1, -2)
attention_mask = attention_mask.unsqueeze(1)
# print("incontext_latents.shape:",incontext_latents.shape)
# print("quantized_bestrq_emb.shape:",quantized_bestrq_emb.shape)
latent_mask_input = self.mask_emb(latent_masks)
#64+48+64+1024
loss,loss_re, loss_cos = self.cfm_wrapper.compute_loss(latents, [latent_mask_input,incontext_latents, quantized_bestrq_emb], latent_masks,attention_mask,wav2vec_embeds, validation_mode=validation_mode)
return loss,loss_re, loss_cos, commitment_loss.mean(), codebook_loss.mean()
def init_device_dtype(self, device, dtype):
self.device = device
self.dtype = dtype
@torch.no_grad()
def fetch_codes(self, input_audios, additional_feats,layer,rvq_num=1):
input_audio_0 = input_audios[[0],:]
input_audio_1 = input_audios[[1],:]
input_audio_0 = self.preprocess_audio(input_audio_0)
input_audio_1 = self.preprocess_audio(input_audio_1)
self.bestrq.eval()
# bestrq_middle,bestrq_last = self.extract_bestrq_embeds(input_audios)
# bestrq_middle = bestrq_middle.detach()
# bestrq_last = bestrq_last.detach()
bestrq_emb = self.extract_bestrq_embeds(input_audio_0,input_audio_1,layer)
bestrq_emb = bestrq_emb.detach()
# self.rvq_bestrq_middle.eval()
# quantized_bestrq_middle, codes_bestrq_middle, *_ = self.rvq_bestrq_middle(bestrq_middle) # b,d,t
# self.rvq_bestrq_last.eval()
# quantized_bestrq_last, codes_bestrq_last, *_ = self.rvq_bestrq_last(bestrq_last) # b,d,t
self.rvq_bestrq_emb.eval()
quantized_bestrq_emb, codes_bestrq_emb, *_ = self.rvq_bestrq_emb(bestrq_emb)
codes_bestrq_emb = codes_bestrq_emb[:,:rvq_num,:]
# print("codes_bestrq_emb.shape:",codes_bestrq_emb.shape)
# exit()
if('spk' in additional_feats):
self.xvecmodel.eval()
spk_embeds = self.extract_spk_embeds(input_audios)
else:
spk_embeds = None
# return [codes_prompt, codes_wav2vec], [prompt_embeds, wav2vec_embeds], spk_embeds
# return [codes_prompt_7, codes_prompt_13, codes_prompt_20, codes_wav2vec_half, codes_wav2vec_last], [prompt_embeds_7, prompt_embeds_13, prompt_embeds_20, wav2vec_embeds_half, wav2vec_embeds_last], spk_embeds
# return [codes_bestrq_middle, codes_bestrq_last], [bestrq_middle, bestrq_last], spk_embeds
return [codes_bestrq_emb], [bestrq_emb], spk_embeds
# return [codes_prompt_13, codes_wav2vec_last], [prompt_embeds_13, wav2vec_embeds_last], spk_embeds
@torch.no_grad()
def fetch_codes_batch(self, input_audios, additional_feats,layer,rvq_num=1):
input_audio_0 = input_audios[:,0,:]
input_audio_1 = input_audios[:,1,:]
input_audio_0 = self.preprocess_audio(input_audio_0)
input_audio_1 = self.preprocess_audio(input_audio_1)
self.bestrq.eval()
# bestrq_middle,bestrq_last = self.extract_bestrq_embeds(input_audios)
# bestrq_middle = bestrq_middle.detach()
# bestrq_last = bestrq_last.detach()
bestrq_emb = self.extract_bestrq_embeds(input_audio_0,input_audio_1,layer)
bestrq_emb = bestrq_emb.detach()
# self.rvq_bestrq_middle.eval()
# quantized_bestrq_middle, codes_bestrq_middle, *_ = self.rvq_bestrq_middle(bestrq_middle) # b,d,t
# self.rvq_bestrq_last.eval()
# quantized_bestrq_last, codes_bestrq_last, *_ = self.rvq_bestrq_last(bestrq_last) # b,d,t
self.rvq_bestrq_emb.eval()
quantized_bestrq_emb, codes_bestrq_emb, *_ = self.rvq_bestrq_emb(bestrq_emb)
# print("codes_bestrq_emb.shape:",codes_bestrq_emb.shape)
codes_bestrq_emb = codes_bestrq_emb[:,:rvq_num,:]
# print("codes_bestrq_emb.shape:",codes_bestrq_emb.shape)
# exit()
if('spk' in additional_feats):
self.xvecmodel.eval()
spk_embeds = self.extract_spk_embeds(input_audios)
else:
spk_embeds = None
# return [codes_prompt, codes_wav2vec], [prompt_embeds, wav2vec_embeds], spk_embeds
# return [codes_prompt_7, codes_prompt_13, codes_prompt_20, codes_wav2vec_half, codes_wav2vec_last], [prompt_embeds_7, prompt_embeds_13, prompt_embeds_20, wav2vec_embeds_half, wav2vec_embeds_last], spk_embeds
# return [codes_bestrq_middle, codes_bestrq_last], [bestrq_middle, bestrq_last], spk_embeds
return [codes_bestrq_emb], [bestrq_emb], spk_embeds
# return [codes_prompt_13, codes_wav2vec_last], [prompt_embeds_13, wav2vec_embeds_last], spk_embeds
@torch.no_grad()
def fetch_codes_batch_ds(self, input_audios, additional_feats, layer, rvq_num=1, ds=250):
input_audio_0 = input_audios[:,0,:]
input_audio_1 = input_audios[:,1,:]
input_audio_0 = self.preprocess_audio(input_audio_0)
input_audio_1 = self.preprocess_audio(input_audio_1)
self.bestrq.eval()
# bestrq_middle,bestrq_last = self.extract_bestrq_embeds(input_audios)
# bestrq_middle = bestrq_middle.detach()
# bestrq_last = bestrq_last.detach()
bestrq_emb = self.extract_bestrq_embeds(input_audio_0,input_audio_1,layer)
bestrq_emb = bestrq_emb.detach()
# self.rvq_bestrq_middle.eval()
# quantized_bestrq_middle, codes_bestrq_middle, *_ = self.rvq_bestrq_middle(bestrq_middle) # b,d,t
# self.rvq_bestrq_last.eval()
# quantized_bestrq_last, codes_bestrq_last, *_ = self.rvq_bestrq_last(bestrq_last) # b,d,t
self.rvq_bestrq_emb.eval()
bestrq_emb = torch.nn.functional.avg_pool1d(bestrq_emb, kernel_size=ds, stride=ds)
quantized_bestrq_emb, codes_bestrq_emb, *_ = self.rvq_bestrq_emb(bestrq_emb)
# print("codes_bestrq_emb.shape:",codes_bestrq_emb.shape)
codes_bestrq_emb = codes_bestrq_emb[:,:rvq_num,:]
# print("codes_bestrq_emb.shape:",codes_bestrq_emb.shape)
# exit()
if('spk' in additional_feats):
self.xvecmodel.eval()
spk_embeds = self.extract_spk_embeds(input_audios)
else:
spk_embeds = None
# return [codes_prompt, codes_wav2vec], [prompt_embeds, wav2vec_embeds], spk_embeds
# return [codes_prompt_7, codes_prompt_13, codes_prompt_20, codes_wav2vec_half, codes_wav2vec_last], [prompt_embeds_7, prompt_embeds_13, prompt_embeds_20, wav2vec_embeds_half, wav2vec_embeds_last], spk_embeds
# return [codes_bestrq_middle, codes_bestrq_last], [bestrq_middle, bestrq_last], spk_embeds
return [codes_bestrq_emb], [bestrq_emb], spk_embeds
# return [codes_prompt_13, codes_wav2vec_last], [prompt_embeds_13, wav2vec_embeds_last], spk_embeds
@torch.no_grad()
def inference_codes(self, codes, spk_embeds, true_latents, latent_length, additional_feats, incontext_length=127,
guidance_scale=2, num_steps=20,
disable_progress=True, scenario='start_seg'):
classifier_free_guidance = guidance_scale > 1.0
device = self.device
dtype = self.dtype
# codes_bestrq_middle, codes_bestrq_last = codes
codes_bestrq_emb = codes[0]
batch_size = codes_bestrq_emb.shape[0]
quantized_bestrq_emb,_,_=self.rvq_bestrq_emb.from_codes(codes_bestrq_emb)
# quantized_bestrq_emb = torch.nn.functional.interpolate(quantized_bestrq_emb, size=(int(quantized_bestrq_emb.shape[-1]/999*937),), mode='linear', align_corners=True)
quantized_bestrq_emb = quantized_bestrq_emb.permute(0,2,1).contiguous()
print("quantized_bestrq_emb.shape:",quantized_bestrq_emb.shape)
# quantized_bestrq_emb = torch.nn.functional.interpolate(quantized_bestrq_emb, size=(int(quantized_bestrq_emb.shape[-1]/999*937),), mode='linear', align_corners=True)
if('spk' in additional_feats):
spk_embeds = spk_embeds.repeat(1,1,quantized_bestrq_emb.shape[-2],1).detach()
num_frames = quantized_bestrq_emb.shape[1]
num_channels_latents = self.num_channels
shape = (batch_size, num_frames, 64)
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
latent_masks = torch.zeros(latents.shape[0], latents.shape[1], dtype=torch.int64, device=latents.device)
latent_masks[:,0:latent_length] = 2
if(scenario=='other_seg'):
latent_masks[:,0:incontext_length] = 1
quantized_bestrq_emb = (latent_masks > 0.5).unsqueeze(-1) * quantized_bestrq_emb \
+ (latent_masks < 0.5).unsqueeze(-1) * self.zero_cond_embedding1.reshape(1,1,1024)
true_latents = true_latents.permute(0,2,1).contiguous()
true_latents = self.normfeat.project_sample(true_latents)
true_latents = true_latents.permute(0,2,1).contiguous()
incontext_latents = true_latents * ((latent_masks > 0.5) * (latent_masks < 1.5)).unsqueeze(-1).float()
incontext_length = ((latent_masks > 0.5) * (latent_masks < 1.5)).sum(-1)[0]
attention_mask=(latent_masks > 0.5)
B, L = attention_mask.size()
attention_mask = attention_mask.view(B, 1, L)
attention_mask = attention_mask * attention_mask.transpose(-1, -2)
attention_mask = attention_mask.unsqueeze(1)
latent_mask_input = self.mask_emb(latent_masks)
if('spk' in additional_feats):
# additional_model_input = torch.cat([quantized_bestrq_middle, quantized_bestrq_last, spk_embeds],1)
additional_model_input = torch.cat([quantized_bestrq_emb, spk_embeds],1)
else:
# additional_model_input = torch.cat([quantized_bestrq_middle, quantized_bestrq_last],1)
additional_model_input = torch.cat([quantized_bestrq_emb],1)
temperature = 1.0
t_span = torch.linspace(0, 1, num_steps + 1, device=quantized_bestrq_emb.device)
latents = self.cfm_wrapper.solve_euler(latents * temperature, latent_mask_input,incontext_latents, incontext_length, t_span, additional_model_input,attention_mask, guidance_scale)
latents[:,0:incontext_length,:] = incontext_latents[:,0:incontext_length,:]
latents = latents.permute(0,2,1).contiguous()
latents = self.normfeat.return_sample(latents)
# latents = latents.permute(0,2,1).contiguous()
return latents
@torch.no_grad()
def inference(self, input_audios, lyric, true_latents, latent_length, additional_feats, guidance_scale=2, num_steps=20,
disable_progress=True,layer=5,scenario='start_seg',rvq_num=1):
codes, embeds, spk_embeds = self.fetch_codes(input_audios, additional_feats,layer,rvq_num)
latents = self.inference_codes(codes, spk_embeds, true_latents, latent_length, additional_feats, \
guidance_scale=guidance_scale, num_steps=num_steps, \
disable_progress=disable_progress,scenario=scenario)
return latents
@torch.no_grad()
def inference_rtf(self, input_audios, lyric, true_latents, latent_length, additional_feats, guidance_scale=2, num_steps=20,
disable_progress=True,layer=5,scenario='start_seg'):
codes, embeds, spk_embeds = self.fetch_codes(input_audios, additional_feats,layer)
import time
start = time.time()
latents = self.inference_codes(codes, spk_embeds, true_latents, latent_length, additional_feats, \
guidance_scale=guidance_scale, num_steps=num_steps, \
disable_progress=disable_progress,scenario=scenario)
return latents,time.time()-start
def prepare_latents(self, batch_size, num_frames, num_channels_latents, dtype, device):
divisor = 4
shape = (batch_size, num_channels_latents, num_frames, 32)
if(num_frames%divisor>0):
num_frames = round(num_frames/float(divisor))*divisor
shape = (batch_size, num_channels_latents, num_frames, 32)
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
return latents