Spaces:
Running
on
L40S
Running
on
L40S
hainazhu
commited on
Commit
·
2644f3e
1
Parent(s):
ceb0b97
Add infer code
Browse files- .gitignore +3 -1
- app.py +2 -0
- ckpt/.gitkeep +0 -0
- levo_inference.py +126 -0
- third_party/.gitkeep +0 -0
.gitignore
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
launchs/
|
2 |
**/__pycache__
|
3 |
-
sample/generated/
|
|
|
|
|
|
1 |
launchs/
|
2 |
**/__pycache__
|
3 |
+
sample/generated/
|
4 |
+
.bash_history
|
5 |
+
.config
|
app.py
CHANGED
@@ -6,6 +6,8 @@ from datetime import datetime
|
|
6 |
import os
|
7 |
import sys
|
8 |
import librosa
|
|
|
|
|
9 |
|
10 |
EXAMPLE_DESC = """female, dark, pop, sad, piano and drums, the bpm is 125."""
|
11 |
EXAMPLE_LYRICS = """
|
|
|
6 |
import os
|
7 |
import sys
|
8 |
import librosa
|
9 |
+
import os.path as op
|
10 |
+
PROJ_DIR = os.path.dirname(os.path.abspath(__file__))
|
11 |
|
12 |
EXAMPLE_DESC = """female, dark, pop, sad, piano and drums, the bpm is 125."""
|
13 |
EXAMPLE_LYRICS = """
|
ckpt/.gitkeep
ADDED
File without changes
|
levo_inference.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
|
5 |
+
sys.path.append('./codeclm/tokenizer')
|
6 |
+
sys.path.append('./codeclm/tokenizer/Flow1dVAE')
|
7 |
+
sys.path.append('.')
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
import json
|
12 |
+
from omegaconf import OmegaConf
|
13 |
+
|
14 |
+
from codeclm.trainer.codec_song_pl import CodecLM_PL
|
15 |
+
from codeclm.models import CodecLM
|
16 |
+
|
17 |
+
from separator import Separator
|
18 |
+
|
19 |
+
|
20 |
+
class LeVoInference(torch.nn.Module):
|
21 |
+
def __init__(self, cfg_path):
|
22 |
+
super().__init__()
|
23 |
+
|
24 |
+
torch.backends.cudnn.enabled = False
|
25 |
+
OmegaConf.register_new_resolver("eval", lambda x: eval(x))
|
26 |
+
OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx])
|
27 |
+
OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x)))
|
28 |
+
|
29 |
+
self.cfg = OmegaConf.load(cfg_path)
|
30 |
+
self.max_duration = self.cfg.max_dur
|
31 |
+
|
32 |
+
# Define model or load pretrained model
|
33 |
+
model_light = CodecLM_PL(self.cfg)
|
34 |
+
|
35 |
+
model_light = model_light.eval().cuda()
|
36 |
+
model_light.audiolm.cfg = self.cfg
|
37 |
+
|
38 |
+
self.model_lm = model_light.audiolm
|
39 |
+
self.model_audio_tokenizer = model_light.audio_tokenizer
|
40 |
+
self.model_seperate_tokenizer = model_light.seperate_tokenizer
|
41 |
+
|
42 |
+
self.model = CodecLM(name = "tmp",
|
43 |
+
lm = self.model_lm,
|
44 |
+
audiotokenizer = self.model_audio_tokenizer,
|
45 |
+
max_duration = self.max_duration,
|
46 |
+
seperate_tokenizer = self.model_seperate_tokenizer,
|
47 |
+
)
|
48 |
+
self.separator = Separator()
|
49 |
+
|
50 |
+
|
51 |
+
self.default_params = dict(
|
52 |
+
cfg_coef = 1.5,
|
53 |
+
temperature = 1.0,
|
54 |
+
top_k = 50,
|
55 |
+
top_p = 0.0,
|
56 |
+
record_tokens = True,
|
57 |
+
record_window = 50,
|
58 |
+
extend_stride = 5,
|
59 |
+
duration = self.max_duration,
|
60 |
+
)
|
61 |
+
|
62 |
+
self.model.set_generation_params(**self.default_params)
|
63 |
+
|
64 |
+
|
65 |
+
def forward(self, lyric: str, description: str, prompt_audio_path: os.PathLike = None, params = dict()):
|
66 |
+
params = {**self.default_params, **params}
|
67 |
+
self.model.set_generation_params(**params)
|
68 |
+
|
69 |
+
if prompt_audio_path is None:
|
70 |
+
pmt_wav, vocal_wav, bgm_wav = None, None, None
|
71 |
+
else:
|
72 |
+
pmt_wav, vocal_wav, bgm_wav = self.separator.run(prompt_audio_path)
|
73 |
+
|
74 |
+
generate_inp = {
|
75 |
+
'lyrics': [lyric.replace(" ", " ")],
|
76 |
+
'descriptions': [description],
|
77 |
+
'melody_wavs': pmt_wav,
|
78 |
+
'vocal_wavs': vocal_wav,
|
79 |
+
'bgm_wavs': bgm_wav,
|
80 |
+
}
|
81 |
+
|
82 |
+
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
83 |
+
tokens = self.model.generate(**generate_inp, return_tokens=True)
|
84 |
+
|
85 |
+
if tokens.shape[-1] > 3000:
|
86 |
+
tokens = tokens[..., :3000]
|
87 |
+
|
88 |
+
with torch.no_grad():
|
89 |
+
wav_seperate = self.model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
|
90 |
+
|
91 |
+
return wav_seperate[0]
|
92 |
+
|
93 |
+
def build_levo_inference():
|
94 |
+
cfg_path = './conf/infer.yaml'
|
95 |
+
return LeVoInference(cfg_path)
|
96 |
+
|
97 |
+
if __name__ == '__main__':
|
98 |
+
import sys
|
99 |
+
import os
|
100 |
+
import time
|
101 |
+
import json
|
102 |
+
import torchaudio
|
103 |
+
|
104 |
+
cfg_path = sys.argv[1]
|
105 |
+
save_dir = sys.argv[2]
|
106 |
+
input_jsonl = sys.argv[3]
|
107 |
+
|
108 |
+
model = LeVoInference(cfg_path)
|
109 |
+
|
110 |
+
os.makedirs(save_dir + "/audios", exist_ok=True)
|
111 |
+
|
112 |
+
with open(input_jsonl, "r") as fp:
|
113 |
+
lines = fp.readlines()
|
114 |
+
|
115 |
+
for line in lines:
|
116 |
+
item = json.loads(line)
|
117 |
+
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac"
|
118 |
+
descriptions = item["descriptions"]
|
119 |
+
lyric = item["gt_lyric"]
|
120 |
+
prompt_audio_path = item['prompt_audio_path']
|
121 |
+
|
122 |
+
wav = model(lyric, descriptions, prompt_audio_path)
|
123 |
+
|
124 |
+
torchaudio.save(target_wav_name, wav.cpu().float(), model.cfg.sample_rate)
|
125 |
+
|
126 |
+
|
third_party/.gitkeep
ADDED
File without changes
|