from concurrent.futures import ProcessPoolExecutor from contextlib import contextmanager from functools import wraps, lru_cache import hashlib import json import logging from pathlib import Path import typing as tp import math from torch import nn import typing as tp from functools import partial import torch.nn.functional as F import flashy import flashy.distrib import omegaconf import torch from torch.nn.utils.rnn import pad_sequence def length_to_mask(lengths: torch.Tensor, max_len: tp.Optional[int] = None) -> torch.Tensor: """Utility function to convert a tensor of sequence lengths to a mask (useful when working on padded sequences). For example: [3, 5] => [[1, 1, 1, 0, 0], [1, 1, 1, 1, 1]] Args: lengths (torch.Tensor): tensor with lengths max_len (int): can set the max length manually. Defaults to None. Returns: torch.Tensor: mask with 0s where there is pad tokens else 1s """ assert len(lengths.shape) == 1, "Length shape should be 1 dimensional." final_length = lengths.max().item() if not max_len else max_len final_length = max(final_length, 1) # if all seqs are of len zero we don't want a zero-size tensor return torch.arange(final_length)[None, :].to(lengths.device) < lengths[:, None] def dict_from_config(cfg: omegaconf.DictConfig) -> dict: """Convenience function to map an omegaconf configuration to a dictionary. Args: cfg (omegaconf.DictConfig): Original configuration to map to dict. Returns: dict: Config as dictionary object. """ dct = omegaconf.OmegaConf.to_container(cfg, resolve=True) assert isinstance(dct, dict) return dct def create_norm_fn(norm_type: str, dim: int, **kwargs) -> nn.Module: """Create normalization module for transformer encoder layer. Args: norm_type (str): Normalization method. dim (int): Dimension of the normalized layer. **kwargs (dict): Additional parameters for normalization layer. Returns: nn.Module: Normalization module. """ if norm_type == 'layer_norm': return nn.LayerNorm(dim, eps=1e-5, **kwargs) else: raise ValueError(f"Unknown norm type: {norm_type}") def get_init_fn(method: str, input_dim: int, init_depth: tp.Optional[int] = None): """LM layer initialization. Inspired from xlformers: https://github.com/fairinternal/xlformers Args: method (str): Method name for init function. Valid options are: 'gaussian', 'uniform'. input_dim (int): Input dimension of the initialized module. init_depth (int, optional): Optional init depth value used to rescale the standard deviation if defined. """ # Compute std std = 1 / math.sqrt(input_dim) # Rescale with depth if init_depth is not None: std = std / math.sqrt(2 * init_depth) if method == 'gaussian': return partial( torch.nn.init.trunc_normal_, mean=0.0, std=std, a=-3 * std, b=3 * std ) elif method == 'uniform': bound = math.sqrt(3) * std # ensure the standard deviation is `std` return partial(torch.nn.init.uniform_, a=-bound, b=bound) else: raise ValueError("Unsupported layer initialization method") def init_layer(m: nn.Module, method: str, init_depth: tp.Optional[int] = None, zero_bias_init: bool = False): """Wrapper around ``get_init_fn`` for proper initialization of LM modules. Args: m (nn.Module): Module to initialize. method (str): Method name for the init function. init_depth (int, optional): Optional init depth value used to rescale the standard deviation if defined. zero_bias_init (bool): Whether to initialize the bias to 0 or not. """ if isinstance(m, nn.Linear): init_fn = get_init_fn(method, m.in_features, init_depth=init_depth) if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16: weight = m.weight.float() init_fn(weight) m.weight.data[:] = weight.half() else: init_fn(m.weight) if zero_bias_init and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Embedding): init_fn = get_init_fn(method, m.embedding_dim, init_depth=None) if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16: weight = m.weight.float() init_fn(weight) m.weight.data[:] = weight.half() else: init_fn(m.weight) def collate(tensors: tp.List[torch.Tensor], dim: int = 0) -> tp.Tuple[torch.Tensor, torch.Tensor]: """Get a list of tensors and collate them to a single tensor. according to the following logic: - `dim` specifies the time dimension which will be stacked and padded. - The output will contain 1 new dimension (dimension index 0) which will be the size of of the original list. Args: tensors (tp.List[torch.Tensor]): List of tensors to collate. dim (int): Dimension which will be stacked and padded. Returns: tp.Tuple[torch.Tensor, torch.Tensor]: torch.Tensor: Stacked and padded tensor. The output will contain 1 new dimension (dimension index 0) which will be the size of the original list. torch.Tensor: Tensor containing length of original tensor sizes (without padding). """ tensors = [x.transpose(0, dim) for x in tensors] lens = torch.LongTensor([len(x) for x in tensors]) padded_tensors = pad_sequence(tensors) padded_tensors = padded_tensors.transpose(0, 1) padded_tensors = padded_tensors.transpose(1, dim + 1) return padded_tensors, lens def sample_top_k(probs: torch.Tensor, k: int) -> torch.Tensor: """Sample next token from top K values along the last dimension of the input probs tensor. Args: probs (torch.Tensor): Input probabilities with token candidates on the last dimension. k (int): The k in “top-k”. Returns: torch.Tensor: Sampled tokens. """ top_k_value, _ = torch.topk(probs, k, dim=-1) min_value_top_k = top_k_value[..., [-1]] probs *= (probs >= min_value_top_k).float() probs.div_(probs.sum(dim=-1, keepdim=True)) next_token = multinomial(probs, num_samples=1) return next_token def sample_top_p(probs: torch.Tensor, p: float) -> torch.Tensor: """Sample next token from top P probabilities along the last dimension of the input probs tensor. Args: probs (torch.Tensor): Input probabilities with token candidates on the last dimension. p (int): The p in “top-p”. Returns: torch.Tensor: Sampled tokens. """ probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) probs_sum = torch.cumsum(probs_sort, dim=-1) mask = probs_sum - probs_sort > p probs_sort *= (~mask).float() probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) next_token = multinomial(probs_sort, num_samples=1) next_token = torch.gather(probs_idx, -1, next_token) return next_token def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None): """torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension. Args: input (torch.Tensor): The input tensor containing probabilities. num_samples (int): Number of samples to draw. replacement (bool): Whether to draw with replacement or not. Keywords args: generator (torch.Generator): A pseudorandom number generator for sampling. Returns: torch.Tensor: Last dimension contains num_samples indices sampled from the multinomial probability distribution located in the last dimension of tensor input. """ input_ = input.reshape(-1, input.shape[-1]) output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator) output = output_.reshape(*list(input.shape[:-1]), -1) return output