import json import torch from tqdm import tqdm import torchaudio import librosa import os import math import numpy as np from tools.get_bsrnnvae import get_bsrnnvae import tools.torch_tools as torch_tools class Tango: def __init__(self, \ device="cuda:0"): self.sample_rate = 44100 self.device = device self.vae = get_bsrnnvae() self.vae = self.vae.eval().to(device) def sound2sound_generate_longterm(self, fname, batch_size=1, duration=20.48, steps=200, disable_progress=False): """ Genrate audio without condition. """ num_frames = math.ceil(duration * 100. / 8) with torch.no_grad(): orig_samples, fs = torchaudio.load(fname) if(fs!=44100): orig_samples = torchaudio.functional.resample(orig_samples, fs, 44100) fs = 44100 if(orig_samples.shape[-1]