import json import torch from tqdm import tqdm from audiocraft.models.loaders import load_compression_model import torchaudio import librosa import os import math import numpy as np class Tango: def __init__(self, \ device="cuda:0"): self.sample_rate = 48000 self.rsp48to32 = torchaudio.transforms.Resample(48000, 32000).to(device) self.rsp32to48 = torchaudio.transforms.Resample(32000, 48000).to(device) encodec = load_compression_model('compression_state_dict.bin', device='cpu').eval() encodec.set_num_codebooks(1) self.encodec = encodec.eval().to(device) self.device = torch.device(device) print ("Successfully loaded encodec model") @torch.no_grad() def remix(self, filename, duration=10.24, start_step=1000, steps=999, disable_progress=False): """ Genrate audio without condition. """ orig_samples, fs = torchaudio.load(filename) if(orig_samples.shape[-1]