from torch.utils.data import Dataset from beartype.typing import Sequence, Callable, Optional, Dict, Tuple, List from beartype import beartype from beartype.door import is_bearable import random import pandas as pd import os from torchaudio.functional import resample import torch import typing as tp from pathlib import Path import torchaudio as ta import torch.nn.functional as F import numpy as np import json import yaml import torchaudio import math import re from loguru import logger class Read_and_PadCrop_Normalized_T(torch.nn.Module): def __init__(self, n_samples: int, sample_rate: int, randomize: bool = True): super().__init__() self.n_samples = n_samples self.sample_rate = sample_rate self.randomize = randomize def __call__(self, filename: str, duration: float, cur_sample_rate: int) -> Tuple[torch.Tensor, float, float, int, int]: if(duration<(float(self.n_samples)/self.sample_rate+1)): # print(duration,(float(self.n_samples)/self.sample_rate+1)) chunk, _ = torchaudio.load(filename, frame_offset=0, num_frames=-1) t_start = 0. t_end = min(1.0, float(self.n_samples) / float(self.sample_rate) / duration) offset = 0 # print('c1:',chunk.shape) else: offset = np.random.randint(0,int(duration*cur_sample_rate)-int(float(self.n_samples)/self.sample_rate*cur_sample_rate)) t_start = offset / float(cur_sample_rate) / duration t_end = t_start + float(self.n_samples) / float(self.sample_rate) / duration chunk, _ = torchaudio.load(filename, frame_offset=offset, num_frames=int(float(self.n_samples)/self.sample_rate*cur_sample_rate)) # print('offset:',offset) # print('c0:',chunk.shape) # Pad with silence if necessary. if(chunk.shape[0]>1): chunk = chunk[torch.randint(chunk.shape[0], size=(1,)),:].float() else: chunk = chunk[[0],:].float() if(cur_sample_rate!=self.sample_rate): # print('a:',cur_sample_rate,chunk.shape) chunk = torchaudio.functional.resample(chunk, cur_sample_rate, self.sample_rate) # print('b:',self.sample_rate,chunk.shape) if chunk.shape[-1] < self.n_samples: chunk = torch.cat([chunk, torch.zeros((1, self.n_samples - chunk.shape[-1],))],-1) else: chunk = chunk[:,0:self.n_samples] seconds_start = math.floor(offset / cur_sample_rate) seconds_total = math.floor(duration) return ( chunk, t_start, t_end, seconds_start, seconds_total ) USE_DUMMY_AUDIO = False #当测试代码时,可以将其置为True,这样就不会读取实际数据,而是用生成的静默音频代替 if USE_DUMMY_AUDIO: logger.warning("USE_DUMMY_AUDIO flag is True, don't use it when train or test!") class SafeAudioReader: """ This class is an adaptor to Read_and_PadCrop_Normalized_T, make it safe to read audio data. """ def __init__(self, duration: float, # 返回音频长度 sample_rate: int, # 返回音频的采样率,如与实际音频采样率不同,会作resample randomize: bool = True ): self.n_samples = int(sample_rate * max(duration, 0)) self.reader = Read_and_PadCrop_Normalized_T(n_samples=self.n_samples, sample_rate=sample_rate, randomize=randomize) #NOTE:这个是核心的函数,所有数据集读取音频都是调用的这个函数! def __call__(self, filepath: os.PathLike, # 音频路径 origin_sample_rate: Optional[int] = None, # 从json文件中读取的实际采样率,如果不给定,则会从文件头中读取 origin_duration: float = None, # 从json文件中读取的实际时长,如果不给定,则会从文件头中读取 ) -> torch.Tensor: if USE_DUMMY_AUDIO: wav = torch.zeros(self.n_samples, dtype=torch.float32) return wav try: if origin_sample_rate is None or origin_duration is None: audio_info = torchaudio.info(filepath) origin_sample_rate = audio_info.sample_rate origin_duration = audio_info.num_frames / origin_sample_rate wav, *ignored = self.reader(filepath, origin_duration, origin_sample_rate) except Exception as e: logger.error(f"Error reading {filepath}: {e}") wav = torch.zeros(self.n_samples, dtype=torch.float32) return wav class PromptTemplate: def __init__(self, template_text: str, tag_map: Dict[str, str], lang:str ='en'): self.template_text = template_text self.tag_map = tag_map self.lang = lang @property def tags(self): return tuple(self.tag_map.keys()) def apply(self, **kwargs): for tag in list(kwargs.keys()): if kwargs[tag] == '': kwargs.pop(tag) for tag in self.tags: if tag in kwargs: kwargs[tag] = self.tag_map[tag].format(**{tag: kwargs[tag]}).strip('[]') else: kwargs[tag] = '' prompt = self.template_text.format(**kwargs) return self.beautify(prompt) def beautify(self, text): if self.lang == 'en': return self._beautify_en(text) elif self.lang == 'zh': return self._beautify_zh(text) else: raise ValueError(f'Unknown language {self.lang}') @staticmethod def _beautify_en(text): # no continuous commas without content between them text = re.sub(r'[,\s]*,[,\s]*', r', ', text) # no continuous whitespace text = re.sub(r'\s+', ' ', text) # the comma is NOT followed by whitespace, and should be followed by ONE whitespace text = re.sub(r'\s+,', r',', text) text = re.sub(r',\s+', r', ', text) # no whitespace before the full stop text = re.sub(r'\s+\.', r'.', text) # strip whitespace, comma, and replace ',.' text = text.strip(' ,') text = text.replace(',.', '.') return text @staticmethod def _beautify_zh(text): # no continuous commas without content between them text = re.sub(r'[,、\s]*,[,、\s]*', r',', text) text = re.sub(r'[,、\s]*、[,、\s]*', r'、', text) # assume there should be NO whitespace in Chinese text = re.sub(r'\s+', r'', text) # strip whitespace, comma, and replace ',。' text = text.strip(', 、') text = text.replace(',。', '。') return text def __repr__(self): return f'PromptTemplate({self.template_text!r}, {self.tag_map!r})' __str__ = __repr__ def parse_prompt_template(prompt_template_text, lang='en'): span_pattern = re.compile(r'\[.*?{.+?}.*?\]', re.DOTALL) tag_pattern = re.compile(r'{.+?}', re.DOTALL) template_text = prompt_template_text.strip() span_texts = span_pattern.findall(prompt_template_text) tag_map = {} for span_text in span_texts: tag = tag_pattern.findall(span_text)[0].strip('{}') tag_map[tag] = span_text template_text = template_text.replace(span_text, '{'+tag+'}') return PromptTemplate(template_text=template_text, tag_map=tag_map, lang=lang) def load_prompt_templates(path, num = 5, lang='en') -> List[PromptTemplate]: with open(path, 'r') as f: lines = f.readlines() cnt = 0 pts = [] for line in lines: pt = parse_prompt_template(line, lang=lang) cnt += 1 if len(pt.tags) < num: logger.error(f'Not enough tags on {path} in line {cnt}: {pt.tags}') pts.append(pt) return pts def get_base_dir_file(key: os.PathLike): base = os.path.basename(key) dirname = os.path.basename(os.path.dirname(key)) return os.path.join(dirname, base) def read_jsonlike(path: os.PathLike): #json or jsonl if str(path).endswith(".json"): with open(path, 'r', encoding='utf8') as f: data = json.load(f) return data elif str(path).endswith(".jsonl"): with open(path, 'r', encoding='utf8') as f: data = [json.loads(line) for line in f.readlines()] return data else: raise ValueError("Unknown file format") dist_prob_map = { 1: (1.0,), 2: (0.5, 0.5), 3: (0.3, 0.4, 0.3), 4: (0.2, 0.3, 0.3, 0.2), 5: (0.2, 0.2, 0.3, 0.2, 0.1), 6: (0.1, 0.15, 0.2, 0.2, 0.2, 0.15), 7: (0.05, 0.1, 0.1, 0.2, 0.25, 0.2, 0.1), 8: (0.03, 0.05, 0.1, 0.15, 0.25, 0.2, 0.1, 0.12), 9: (0.02, 0.1, 0.1, 0.1, 0.15, 0.2, 0.15, 0.1, 0.08), 10: (0.01, 0.1, 0.1, 0.15, 0.2, 0.15, 0.1, 0.05, 0.05, 0.09) } dist_prob_map_low = { 1: (1.0,), 2: (0.8, 0.2), 3: (0.8, 0.1, 0.1), 4: (0.7, 0.1, 0.1, 0.1), 5: (0.7, 0.1, 0.1, 0.05, 0.05), 6: (0.7, 0.1, 0.05, 0.05, 0.05, 0.05), } _bpm_range_rights = ( (40, '20-40'), (60, '40-60'), (66, '60-66'), (76, '66-76'), (108, '76-108'), (120, '108-120'), (168, '120-168'), (176, '168-176'), (200, '176-200') ) _bpm_desc_map = { '20-40': ("glacial pace", "extremely slow tempo", "crawl-like speed", "snail's pace", "almost motionless rhythm", "Larghissimo"), '40-60': ("broad and slow", "spacious tempo", "unhurried pace", "calm rhythm", "relaxed speed", "Largo"), '60-66': ("gentle tempo", "leisurely pace", "easy-going rhythm", "unrushed speed", "smooth and slow", 'Larghetto'), '66-76': ("slow and steady", "deliberate tempo", "unhurried pace", "relaxed rhythm", "easy speed", 'Adagio'), '76-108': ("walking pace", "moderate tempo", "steady rhythm", "balanced speed", "easy-flowing tempo", "Andante"), '108-120': ("medium pace", "comfortable tempo", "even rhythm", "measured speed", "controlled tempo", 'Moderato'), '120-168': ("quick and lively", "brisk pace", "energetic tempo", "upbeat rhythm", "spirited speed", 'Allegro'), '168-176': ("lively and fast", "bright tempo", "sprightly pace", "vibrant rhythm", "animated speed", 'Vivace'), '176-200': ("very fast tempo", "rapid pace", "high-speed rhythm", "hurried speed", "accelerated tempo", 'Presto'), '>200': ("extremely fast", "breakneck speed", "blazing tempo", "lightning-fast rhythm", "supercharged pace", 'Prestissimo') } _bpm_desc_map_zh = { '20-40': ("极度缓慢", "极慢的节奏", "悠长的旋律", "迟缓的节奏", "几乎静止的节奏", "甚缓"), '40-60': ("宽广而缓慢", "宽敞的节奏", "从容不迫的速度", "平静的节奏", "轻松的速度", "广板"), '60-66': ("柔和的节奏", "悠闲的速度", "轻松的节奏", "不慌不忙的速度", "平滑而缓慢", '小广板'), '66-76': ("缓慢而稳定", "沉稳的旋律", "从容不迫的速度", "轻松的节奏", "轻松的速度", '慢板'), '76-108': ("步行速度", "适中的节奏", "稳定的节奏", "平衡的速度", "流畅的节奏", "行板"), '108-120': ("中等速度", "舒适的节奏", "均匀的节奏", "有节制的速度", "稳定的氛围", '中板'), '120-168': ("快速而生动", "轻快的速度", "充满活力的节奏", "欢快的节奏", "富有精神的速度", '快板'), '168-176': ("生动而快速", "明快的节奏", "活泼的速度", "充满活力的节奏", "生气勃勃的速度", '活泼的'), '176-200': ("非常快的节奏", "快速的速度", "高速的节奏", "匆忙的速度", "加速的节奏", '急板'), '>200': ("极快的速度", "极速旋律", "炽热的节奏", "闪电般的节奏", "疾驰的速度", '最急板') } def get_bpm_range(bpm): bpm = int(bpm) for right, tag in _bpm_range_rights: if bpm <= right: return tag return '>200' def gen_bpm_descript(bpm, lang='en'): bpm_range = get_bpm_range(bpm) if lang == 'en': return random.choice(_bpm_desc_map[bpm_range]) elif lang == 'zh': return random.choice(_bpm_desc_map_zh[bpm_range]) else: raise ValueError(f"Unknown language {lang}") def read_translate(translate: Optional[Dict[str, os.PathLike]]): if translate is None: return None return {k: read_jsonlike(path) for k, path in translate.items()} class MagnaTagATuneDataset(Dataset): def __init__(self): pass def tags_to_desc(tag_list, sep=',') -> str: if not isinstance(tag_list, Sequence): return str(tag_list) if isinstance(tag_list, str): return tag_list if len(tag_list) <= 0: return '' elif len(tag_list) <= 5: probs = dist_prob_map[len(tag_list)] tags_num = random.choices(range(1, len(tag_list)+1), probs)[0] random.shuffle(tag_list) tag_list = tag_list[:tags_num] return sep.join(tag_list) else: probs = dist_prob_map[5] tags_num = random.choices(range(1, 6), probs)[0] random.shuffle(tag_list) tag_list = tag_list[:tags_num] return sep.join(tag_list) def get_sr_and_duration_info(item): return item.get('sample_rate', None), item.get('duration', None) class MtgJamendoDatasetFromJson(Dataset): def __init__(self, data_dir:str, json_path:str, duration:float=10, sr:int = 0, *, lang = 'en', return_path = False, prompt_template_path: os.PathLike = None, tag_types = [], translate:Optional[Dict[str, os.PathLike]] = None, ): self.audio_reader = SafeAudioReader(duration, sr) self.data_dir = data_dir self._load_metadata_json(json_path) self.sr = sr self.duration = duration self.return_path = return_path self.lang = lang self.use_dynamic_prompt = prompt_template_path is not None if self.use_dynamic_prompt: self.prompt_templates = load_prompt_templates(prompt_template_path, num = len(tag_types)) self.tag_types = tag_types self.translate = read_translate(translate) if not self.use_dynamic_prompt and self.lang != 'en': raise NotImplementedError #这些tag被认为是弱语义的,会避免产生仅包含这些tag的文本提示 WEAK_TAG_LIST = ["title", "artist"] def _load_metadata_json(self, json_path): with open(json_path) as fp: self.data = json.load(fp) def convert_key_to_path(self, key): return os.path.join(self.data_dir, get_base_dir_file(key)) def __len__(self): return len(self.data) def __getitem__(self, idx): item = self.data[idx] path = self.convert_key_to_path(item['key']) description = self.generate_description(item) sr, duration = get_sr_and_duration_info(item) audio = self.audio_reader(path, sr, duration) if self.return_path: return audio, description, path return audio, description def tags_to_desc(self, tag_list, tag_type) -> str: if self.lang == 'en': return tags_to_desc(tag_list) elif self.lang == 'zh': translator = self.translate[tag_type] translated_tag_list = [translator[tag] for tag in tag_list if tag in translator ] return tags_to_desc(translated_tag_list, sep='、') def generate_description(self, item): if self.use_dynamic_prompt: # dynamically generate prompt from given prompt template prompt_template = random.choice(self.prompt_templates) description = self.generate_description_dynamic(item, prompt_template) else: # use ordinary static prompt instead description = self.generate_description_ordinary(item) return description def generate_description_dynamic(self, data, prompt_template: PromptTemplate): exists_tag = [key for key in data if (key in self.tag_types) and (data[key] is not None) and (len(data[key]) > 0)] exists_weak_tag = list(filter(lambda t: t in self.WEAK_TAG_LIST, exists_tag)) exists_strong_tag = list(filter(lambda t: t not in self.WEAK_TAG_LIST, exists_tag)) if len(exists_strong_tag) > 0: probs = dist_prob_map[len(exists_strong_tag)] tags_num = random.choices(range(1, len(exists_strong_tag)+1), probs)[0] random.shuffle(exists_strong_tag) tags = exists_strong_tag[:tags_num] weak_probs = dist_prob_map_low[len(exists_weak_tag) + 1] weak_tags_num = random.choices(range(0, len(exists_weak_tag) + 1), weak_probs)[0] random.shuffle(exists_weak_tag) weak_tags = exists_weak_tag[:weak_tags_num] tags += weak_tags tags_args = {tag: self.tags_to_desc(data[tag], tag) for tag in tags} prompt = prompt_template.apply(**tags_args) else: # no strong tags, use all weak tags instead tags_args = {tag: self.tags_to_desc(data[tag], tag) for tag in exists_weak_tag} prompt = prompt_template.apply(**tags_args) return prompt def generate_description_ordinary(self, data, thresh = 0.3): # Initialize the description with title and artist description = f'"{data["title"]+" is " if random.random() > thresh else ""}"a piece of music by {data["artist"]}' # Add genre if available if data["genre"] and random.random() > thresh: genres = ', '.join(data["genre"]) description += f', belonging to the {genres} genres' # Add moods if available if data["moods"] and random.random() > thresh: moods = ', '.join(data["moods"]) description += f'. This track conveys a {moods} mood' # Add instruments if available if data["instrument"] and random.random() > thresh: instruments = ', '.join(data["instrument"]) description += f', and primarily features the following instruments: {instruments}' # Add a period to end the description description += '.' return description class AudioStockDataset(Dataset): def __init__(self, metadata_path:str, duration:float=10, sr:int = 0, return_path = False, return_audio = True, prompt_template_path: os.PathLike = None, tag_types = [], lang = 'en', translate:Optional[Dict[str, os.PathLike]] = None ): self.audio_reader = SafeAudioReader(duration, sr) self._load_metadata(metadata_path) self.sr = sr self.duration = duration self.return_path = return_path self.return_audio = return_audio self.use_dynamic_prompt = prompt_template_path is not None if self.use_dynamic_prompt: self.prompt_templates = load_prompt_templates(prompt_template_path, num = len(tag_types), lang = lang) self.tag_types = tag_types self.lang = lang self.translate = read_translate(translate) def _load_metadata(self, metadata_path): with open(metadata_path) as fp: lines = fp.readlines() self.data = [] for line in lines: item = json.loads(line) self.data.append(item) self.is_info_recorded = bool('Tags' in self.data[0]) def __len__(self): return len(self.data) def __getitem__(self, idx): path:str = self.data[idx]["path"] json_path = path[:path.rfind('.')] + ".json" if self.is_info_recorded: item = self.data[idx] else: try: with open(json_path) as fp: item:dict = json.load(fp) except Exception as e: print(f"Error loading json file {json_path} :\n{e}") item = {} description = self.generate_description(item) if self.return_audio: sr, duration = get_sr_and_duration_info(item) audio = self.audio_reader(path, sr, duration) else: audio = None if self.return_path: return audio, description, path return audio, description def generate_description(self, item): if self.use_dynamic_prompt: # dynamically generate prompt from given prompt template prompt_template = random.choice(self.prompt_templates) description = self.generate_description_dynamic(item, prompt_template) else: # use ordinary static prompt instead description = self.generate_description_ordinary(item) return description def generate_description_dynamic(self, data, prompt_template: PromptTemplate): exists_tag = [key for key in data if (key in self.tag_types) and (data[key] is not None) and (len(data[key]) > 0)] if len(exists_tag) > 0: probs = dist_prob_map[len(exists_tag)] tags_num = random.choices(range(1, len(exists_tag)+1), probs)[0] random.shuffle(exists_tag) tags = exists_tag[:tags_num] tags_args = {tag: self.tags_to_desc(data[tag], tag) for tag in tags} tags_args = self.handle_BPM_tag(tags_args) prompt = prompt_template.apply(**tags_args) else: # no strong tags, use all weak tags instead prompt = prompt_template.apply() return prompt def tags_to_desc(self, tag_list, tag_type) -> str: if self.lang == 'en': return tags_to_desc(tag_list) elif self.lang == 'zh': if tag_type == 'BPM': return tags_to_desc(tag_list, sep='、') translator = self.translate[tag_type] translated_tag_list = [translator[tag] for tag in tag_list if tag in translator ] return tags_to_desc(translated_tag_list, sep='、') def handle_BPM_tag(self, tags_args): if "BPM" in tags_args and 'BPMDescript' in self.tag_types: bpm = tags_args["BPM"] del tags_args["BPM"] tag_types_used = random.choice((('BPM',), ('BPMDescript',), ('BPM', 'BPMDescript'))) for tag_type in tag_types_used: tags_args[tag_type] = bpm if tag_type == 'BPM' else gen_bpm_descript(bpm, lang=self.lang) return tags_args def generate_description_ordinary(self, data, thresh = 0.3): if self.lang != 'en': raise ValueError(f'Language {self.lang} is not supported for ordinary description generation') description = f'a piece of music by {data["Artist"]}' # Add genre if available if data["Genre"] and random.random() > thresh: genres = ', '.join(data["Genre"]) description += f', belonging to the {genres} genres' # Add moods if available if data["Tags"] and random.random() > thresh: tags = ', '.join(data["Tags"]) description += f'. This track contains the tags:{tags}' # Add moods if available if data["Mood"] and random.random() > thresh: moods = ', '.join(data["Mood"]) description += f'. This track conveys a {moods} mood.' # Add instruments if available if data["Instrument"] and random.random() > thresh: instruments = ', '.join(data["Instrument"]) description += f'. and primarily features the following instruments: {instruments}' # Add a period to end the description description += '.' return description def mp3_path_to_id(mp3_path): return int( mp3_path[mp3_path.rindex('/') + 1 : mp3_path.rindex('.mp3')] ) class TmeDataset(Dataset): def __init__(self, data_index:str, music_info:str = None, duration:float = 10, sr:int = 0, return_path = False, return_audio = True, prompt_format_path: os.PathLike = None, tag_types = ['*'], lang = 'zh', translate: Optional[os.PathLike] = None, prompt_dir: os.PathLike = None, ): self.audio_reader = SafeAudioReader(duration, sr) self.sr = sr self.duration = duration self.return_path = return_path self.return_audio = return_audio self.lang = lang self.use_ready_prompt = prompt_dir is not None data_index = read_jsonlike(data_index) self.data_index_dict = {mp3_path_to_id(d['path']) : d for d in data_index} self.data_ids = list(self.data_index_dict.keys()) if not self.use_ready_prompt: #读取音乐的信息文件 music_info = read_jsonlike(music_info) if 'music' in music_info: music_info = music_info['music'] self.music_info_dict = {d["歌曲ID"]:d for d in music_info} self.data_index_dict = {k:v for k,v in self.data_index_dict.items() if k in self.music_info_dict} self.data_ids = list(self.data_index_dict.keys()) with open(prompt_format_path) as fp: self.prompt_formats = yaml.load(fp, Loader=yaml.FullLoader) #加载tag types,并分成一般的tag_types和关键的key_tag_types if '*' in tag_types: self.tag_types = ['歌曲名', 'bpm', '专辑名', '歌手名', '作曲', 'tag'] else: self.tag_types = tag_types self.key_tag_types = [] if 'tag' in self.tag_types: self.tag_types.remove('tag') self.key_tag_types = list(self.prompt_formats['tag'].keys()) #加载translate翻译 if translate is not None: self.translator = read_jsonlike(translate) else: data_ids_set = set(self.data_ids) self.prompts_dict = {} for fname in os.listdir(prompt_dir): items = read_jsonlike(os.path.join(prompt_dir, fname)) for item in items: if item['ID'] not in data_ids_set or not self.is_valid_prompt_text(item['Text']): continue if item['ID'] not in self.prompts_dict: self.prompts_dict[item['ID']] = [] self.prompts_dict[item['ID']].append(item['Text']) self.data_index_dict = {k:v for k,v in self.data_index_dict.items() if k in self.prompts_dict} self.data_ids = list(self.data_index_dict.keys()) def tags_to_desc(self, tag_list) -> str: if is_bearable(tag_list, int): return str(tag_list) if self.lang == 'zh': return tags_to_desc(tag_list, sep=self.sep) else: translated_tag_list = [self.translator[tag] for tag in tag_list if tag in self.translator ] return tags_to_desc(translated_tag_list, sep=self.sep) def gen_desc_of_tag(self, formats, tags): fmt = random.choice(formats) return fmt.format(self.tags_to_desc(tags)) @staticmethod def check_valid(value): if isinstance(value, int) or isinstance(value, float): return value > 0 if (value is not None) and (not isinstance(value, Sequence) or len(value) > 0): return True return False @staticmethod def remove_repeat(data): #若专辑名和歌曲名相同,则只使用后者 album_name = data.get('专辑名', None) if album_name is not None and album_name == data.get('歌曲名', None): del data['专辑名'] return data @property def comma(self): if self.lang == 'zh': return ',' elif self.lang == 'en': return ', ' @property def sep(self): if self.lang == 'zh': return '、' elif self.lang == 'en': return ', ' def generate_description(self, data): data = self.remove_repeat(data) weak_tags = [key for key in data if (key in self.tag_types and self.check_valid(data[key]))] #弱语义的tag,这些tag的出现比例会放低 key_tags = [key for key in data['tag'] if (key in self.key_tag_types and self.check_valid(data['tag'][key]))] #关键的tag,这些tag必须出现至少一个 prompts = [] if len(weak_tags) > 0: probs = dist_prob_map_low[len(weak_tags)] if len(key_tags) > 0: tags_num = random.choices(range(0, len(weak_tags)), probs)[0] else: tags_num = random.choices(range(1, len(weak_tags) + 1), probs)[0] random.shuffle(weak_tags) tags = weak_tags[:tags_num] for tag_type in tags: tag_desc = self.gen_desc_of_tag(self.prompt_formats[tag_type], int(data[tag_type]) if tag_type == 'bpm' else data[tag_type]) prompts.append(tag_desc) if len(key_tags) > 0: probs = dist_prob_map[len(key_tags)] tags_num = random.choices(range(1, len(key_tags) + 1), probs)[0] random.shuffle(key_tags) tags = key_tags[:tags_num] for tag_type in tags: tag_desc = self.gen_desc_of_tag(self.prompt_formats['tag'][tag_type], data['tag'][tag_type]) prompts.append(tag_desc) random.shuffle(prompts) return self.comma.join(prompts) def is_valid_prompt_text(self, text): for bad in ('抱歉','sorry', 'Sorry'): if bad in text: return False return True def get_ready_prompt(self, path): sid = mp3_path_to_id(path) return random.choice(self.prompts_dict[sid]) def __len__(self): return len(self.data_ids) def __getitem__(self, idx): data_id = self.data_ids[idx] item = self.data_index_dict[data_id] path = item['path'] if not self.use_ready_prompt: info = self.music_info_dict[data_id] description = self.generate_description(info) else: description = self.get_ready_prompt(path) if self.return_audio: sr, duration = get_sr_and_duration_info(item) audio = self.audio_reader(path, sr, duration) else: audio = None if self.return_path: return audio, description, path return audio, description class CombinedDataset(Dataset): @beartype def __init__(self, datasets: Sequence[Dataset], ratios: Sequence[int]): self.datasets = datasets self.datasets_index = [] for i,dataset in enumerate(datasets): if dataset is None: continue for dup in range(ratios[i]): for j in range(len(dataset)): self.datasets_index.append((i,j)) def __len__(self): return len(self.datasets_index) def __getitem__(self, idx): index = self.datasets_index[idx] i,j = index return self.datasets[i][j] class CombinedDataset_random(Dataset): @beartype def __init__(self, num_examples:int, datasets: Sequence[Dataset], ratios: Sequence[int] ): self.datasets = datasets self.datasets_index = [] for i,dataset in enumerate(datasets): if dataset is None: continue for dup in range(ratios[i]): for j in range(len(dataset)): self.datasets_index.append((i,j)) if num_examples > 0: self.random_choose = True self.dataset_len = num_examples else: self.random_choose = False self.dataset_len = len(self.datasets_index) def __len__(self): return self.dataset_len def __getitem__(self, idx): first_try = True try_cnt = 0 while True: try: if(self.random_choose or not first_try): index2 = [] index2.append(np.random.randint(0,len(self.datasets))) index2.append(np.random.randint(0,len(self.datasets[index2[-1]]))) else: index2 = self.datasets_index[idx] first_try = False out = self.datasets[index2[0]][index2[1]] if(len(out[0].shape)==1):out[0]=out[0][None,:] return out except: print("Error loadding ", index2) try_cnt += 1 if(try_cnt>10): raise ValueError()