import os import sys sys.path.append('./codeclm/tokenizer') sys.path.append('./codeclm/tokenizer/Flow1dVAE') sys.path.append('.') import torch import json import numpy as np from omegaconf import OmegaConf from codeclm.trainer.codec_song_pl import CodecLM_PL from codeclm.models import CodecLM from separator import Separator class LeVoInference(torch.nn.Module): def __init__(self, ckpt_path): super().__init__() torch.backends.cudnn.enabled = False OmegaConf.register_new_resolver("eval", lambda x: eval(x)) OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx]) OmegaConf.register_new_resolver("get_fname", lambda: 'default') OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x))) cfg_path = os.path.join(ckpt_path, 'config.yaml') pt_path = os.path.join(ckpt_path, 'model.pt') self.cfg = OmegaConf.load(cfg_path) self.cfg.mode = 'inference' self.max_duration = self.cfg.max_dur # Define model or load pretrained model model_light = CodecLM_PL(self.cfg, pt_path) model_light = model_light.eval().cuda() model_light.audiolm.cfg = self.cfg self.model_lm = model_light.audiolm self.model_audio_tokenizer = model_light.audio_tokenizer self.model_seperate_tokenizer = model_light.seperate_tokenizer self.model = CodecLM(name = "tmp", lm = self.model_lm, audiotokenizer = self.model_audio_tokenizer, max_duration = self.max_duration, seperate_tokenizer = self.model_seperate_tokenizer, ) self.separator = Separator() self.default_params = dict( cfg_coef = 1.5, temperature = 1.0, top_k = 50, top_p = 0.0, record_tokens = True, record_window = 50, extend_stride = 5, duration = self.max_duration, ) self.model.set_generation_params(**self.default_params) def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, params = dict()): params = {**self.default_params, **params} self.model.set_generation_params(**params) if prompt_audio_path is not None and os.path.exists(prompt_audio_path): pmt_wav, vocal_wav, bgm_wav = self.separator.run(prompt_audio_path) melody_is_wav = True elif genre is not None and auto_prompt_path is not None: auto_prompt = torch.load(auto_prompt_path) merge_prompt = [item for sublist in auto_prompt.values() for item in sublist] if genre == "Auto": prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))] else: prompt_token = auto_prompt[genre][np.random.randint(0, len(auto_prompt[genre]))] pmt_wav = prompt_token[:,[0],:] vocal_wav = prompt_token[:,[1],:] bgm_wav = prompt_token[:,[2],:] melody_is_wav = False else: pmt_wav = None vocal_wav = None bgm_wav = None melody_is_wav = True generate_inp = { 'lyrics': [lyric.replace(" ", " ")], 'descriptions': [description], 'melody_wavs': pmt_wav, 'vocal_wavs': vocal_wav, 'bgm_wavs': bgm_wav, 'melody_is_wav': melody_is_wav, } with torch.autocast(device_type="cuda", dtype=torch.float16): tokens = self.model.generate(**generate_inp, return_tokens=True) if tokens.shape[-1] > 3000: tokens = tokens[..., :3000] with torch.no_grad(): if melody_is_wav: wav_seperate = self.model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav) else: wav_seperate = self.model.generate_audio(tokens) return wav_seperate[0]