import torchaudio import os import torch from third_party.demucs.models.pretrained import get_model_from_yaml class Separator(torch.nn.Module): def __init__(self, dm_model_path='third_party/demucs/ckpt/htdemucs.pth', dm_config_path='third_party/demucs/ckpt/htdemucs.yaml', gpu_id=0) -> None: super().__init__() if torch.cuda.is_available() and gpu_id < torch.cuda.device_count(): self.device = torch.device(f"cuda:{gpu_id}") else: self.device = torch.device("cpu") self.demucs_model = self.init_demucs_model(dm_model_path, dm_config_path) def init_demucs_model(self, model_path, config_path): model = get_model_from_yaml(config_path, model_path) model.to(self.device) model.eval() return model def load_audio(self, f): a, fs = torchaudio.load(f) if (fs != 48000): a = torchaudio.functional.resample(a, fs, 48000) if a.shape[-1] >= 48000*10: a = a[..., :48000*10] else: a = torch.cat([a, a], -1) return a[:, 0:48000*10] def run(self, audio_path, output_dir='tmp', ext=".flac"): os.makedirs(output_dir, exist_ok=True) name, _ = os.path.splitext(os.path.split(audio_path)[-1]) output_paths = [] for stem in self.demucs_model.sources: output_path = os.path.join(output_dir, f"{name}_{stem}{ext}") if os.path.exists(output_path): output_paths.append(output_path) if len(output_paths) == 1: # 4 vocal_path = output_paths[0] else: drums_path, bass_path, other_path, vocal_path = self.demucs_model.separate(audio_path, output_dir, device=self.device) for path in [drums_path, bass_path, other_path]: os.remove(path) full_audio = self.load_audio(audio_path) vocal_audio = self.load_audio(vocal_path) bgm_audio = full_audio - vocal_audio return full_audio, vocal_audio, bgm_audio