File size: 21,416 Bytes
7b0a1ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import os, torch
import os.path as osp
import shutil
from tqdm.auto import tqdm
from einops import rearrange
from accelerate import Accelerator
from torchvision.utils import make_grid, save_image
from torch.utils.data import DataLoader, random_split, DistributedSampler
from semanticist.utils.logger import SmoothedValue, MetricLogger, empty_cache
from accelerate.utils import DistributedDataParallelKwargs
from torchmetrics.functional.image import (
    peak_signal_noise_ratio as psnr,
    structural_similarity_index_measure as ssim
)
from semanticist.engine.trainer_utils import (
    instantiate_from_config, concat_all_gather,
    save_img_batch, get_fid_stats,
    EMAModel, PaddedDataset, create_scheduler, load_state_dict,
    load_safetensors, setup_result_folders, create_optimizer
)

class DiffusionTrainer:
    def __init__(

        self,

        model,

        dataset,

        test_dataset=None,

        test_only=False,

        num_epoch=400,

        valid_size=32,

        blr=1e-4,

        cosine_lr=True,

        lr_min=0,

        warmup_epochs=100,

        warmup_steps=None,

        warmup_lr_init=0,

        decay_steps=None,

        batch_size=32,

        eval_bs=32,

        test_bs=64,

        num_workers=8,

        pin_memory=False,

        max_grad_norm=None,

        grad_accum_steps=1,

        precision='bf16',

        save_every=10000,

        sample_every=1000,

        fid_every=50000,

        result_folder=None,

        log_dir="./log",

        cfg=3.0,

        test_num_slots=None,

        eval_fid=False,

        fid_stats=None,

        enable_ema=False,

        compile=False,

    ):
        kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
        self.accelerator = Accelerator(
            kwargs_handlers=[kwargs],
            mixed_precision=precision,
            gradient_accumulation_steps=grad_accum_steps,
            log_with="tensorboard",
            project_dir=log_dir,
        )
        
        self.model = instantiate_from_config(model)
        self.num_slots = model.params.num_slots

        if test_dataset is not None:
            test_dataset = instantiate_from_config(test_dataset)
            self.test_ds = test_dataset
            
            # Calculate padded dataset size to ensure even distribution
            total_size = len(test_dataset)
            world_size = self.accelerator.num_processes
            padding_size = world_size * test_bs - (total_size % (world_size * test_bs))
            self.test_dataset_size = total_size
            
            self.test_ds = PaddedDataset(self.test_ds, padding_size)
            self.test_dl = DataLoader(
                self.test_ds,
                batch_size=test_bs,
                num_workers=num_workers,
                pin_memory=pin_memory,
                shuffle=False,
                drop_last=True,
            )
            if self.accelerator.is_main_process:
                print(f"test dataset size: {len(test_dataset)}, test batch size: {test_bs}")
        else:
            self.test_dl = None
        self.test_only = test_only

        if not test_only:
            dataset = instantiate_from_config(dataset)
            train_size = len(dataset) - valid_size
            self.train_ds, self.valid_ds = random_split(
                dataset,
                [train_size, valid_size],
                generator=torch.Generator().manual_seed(42),
            )
            if self.accelerator.is_main_process:
                print(f"train dataset size: {train_size}, valid dataset size: {valid_size}")

            sampler = DistributedSampler(
                self.train_ds,
                num_replicas=self.accelerator.num_processes,
                rank=self.accelerator.process_index,
                shuffle=True,
            )
            self.train_dl = DataLoader(
                self.train_ds,
                batch_size=batch_size,
                sampler=sampler,
                num_workers=num_workers,
                pin_memory=pin_memory,
                drop_last=True,
            )
            self.valid_dl = DataLoader(
                self.valid_ds,
                batch_size=eval_bs,
                shuffle=False,
                num_workers=num_workers,
                pin_memory=pin_memory,
                drop_last=False,
            )

            effective_bs = batch_size * grad_accum_steps * self.accelerator.num_processes
            lr = blr * effective_bs / 256
            if self.accelerator.is_main_process:
                print(f"Effective batch size is {effective_bs}")

            self.g_optim = create_optimizer(self.model, weight_decay=0.05, learning_rate=lr,) # accelerator=self.accelerator)
            
            if warmup_epochs is not None:
                warmup_steps = warmup_epochs * len(self.train_dl)
            
            self.g_sched = create_scheduler(
                self.g_optim,
                num_epoch,
                len(self.train_dl),
                lr_min,
                warmup_steps,
                warmup_lr_init,
                decay_steps,
                cosine_lr
            )
            self.accelerator.register_for_checkpointing(self.g_sched)
            self.model, self.g_optim, self.g_sched = self.accelerator.prepare(self.model, self.g_optim, self.g_sched)
        else:
           self.model, self.test_dl = self.accelerator.prepare(self.model, self.test_dl)

        self.steps = 0
        self.loaded_steps = -1

        if compile:
            _model = self.accelerator.unwrap_model(self.model)
            _model.vae = torch.compile(_model.vae, mode="reduce-overhead")
            _model.dit = torch.compile(_model.dit, mode="reduce-overhead")
            # _model.encoder = torch.compile(_model.encoder, mode="reduce-overhead") # nan loss when compiled together with dit, no idea why
            _model.encoder2slot = torch.compile(_model.encoder2slot, mode="reduce-overhead")

        self.enable_ema = enable_ema
        if self.enable_ema and not self.test_only: # when testing, we directly load the ema dict and skip here
            self.ema_model = EMAModel(self.accelerator.unwrap_model(self.model), self.device)
            self.accelerator.register_for_checkpointing(self.ema_model)

        self._load_checkpoint(model.params.ckpt_path)
        if self.test_only:
            self.steps = self.loaded_steps

        self.num_epoch = num_epoch
        self.save_every = save_every
        self.sample_every = sample_every
        self.fid_every = fid_every
        self.max_grad_norm = max_grad_norm

        self.cfg = cfg
        self.test_num_slots = test_num_slots
        if self.test_num_slots is not None:
            self.test_num_slots = min(self.test_num_slots, self.num_slots)
        else:
            self.test_num_slots = self.num_slots
        eval_fid = eval_fid or model.params.eval_fid # legacy
        self.eval_fid = eval_fid
        if eval_fid:
            if fid_stats is None:
                fid_stats = model.params.fid_stats # legacy
            assert fid_stats is not None
            assert test_dataset is not None
        self.fid_stats = fid_stats

        self.result_folder = result_folder
        self.model_saved_dir, self.image_saved_dir = setup_result_folders(result_folder)

    @property
    def device(self):
        return self.accelerator.device

    def _load_checkpoint(self, ckpt_path=None):
        if ckpt_path is None or not osp.exists(ckpt_path):
            return
        
        model = self.accelerator.unwrap_model(self.model)

        if osp.isdir(ckpt_path):
            # ckpt_path is something like 'path/to/models/step10/'
            self.loaded_steps = int(
                ckpt_path.split("step")[-1].split("/")[0]
            )
            if not self.test_only:
                self.accelerator.load_state(ckpt_path)
            else:
                if self.enable_ema:
                    model_path = osp.join(ckpt_path, "custom_checkpoint_1.pkl")
                    if osp.exists(model_path):
                        state_dict = torch.load(model_path, map_location="cpu")
                        load_state_dict(state_dict, model)
                        if self.accelerator.is_main_process:
                            print(f"Loaded ema model from {model_path}")
                else:
                    model_path = osp.join(ckpt_path, "model.safetensors")
                    if osp.exists(model_path):
                        load_safetensors(model_path, model)
        else:
            # ckpt_path is something like 'path/to/models/step10.pt'
            if ckpt_path.endswith(".safetensors"):
                load_safetensors(ckpt_path, model)
            else:
                state_dict = torch.load(ckpt_path, map_location="cpu")
                load_state_dict(state_dict, model)
        if self.accelerator.is_main_process:
            print(f"Loaded checkpoint from {ckpt_path}")

    def train(self, config=None):
        n_parameters = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
        if self.accelerator.is_main_process:
            print(f"number of learnable parameters: {n_parameters//1e6}M")
        if config is not None:
            # save the config
            from omegaconf import OmegaConf
            if isinstance(config, str) and osp.exists(config):
                # If it's a path, copy the file to config.yaml
                shutil.copy(config, osp.join(self.result_folder, "config.yaml"))
            else:
                # If it's an OmegaConf object, dump it
                config_save_path = osp.join(self.result_folder, "config.yaml")
                OmegaConf.save(config, config_save_path)

        self.accelerator.init_trackers("semanticist")

        if self.test_only:
            empty_cache()
            self.evaluate()
            self.accelerator.wait_for_everyone()
            empty_cache()
            return

        for epoch in range(self.num_epoch):
            if ((epoch + 1) * len(self.train_dl)) <= self.loaded_steps:
                if self.accelerator.is_main_process:
                    print(f"Epoch {epoch} is skipped because it is loaded from ckpt")
                self.steps += len(self.train_dl)
                continue

            if self.steps < self.loaded_steps:
                for _ in self.train_dl:
                    self.steps += 1
                    if self.steps >= self.loaded_steps:
                        break
            
            
            self.accelerator.unwrap_model(self.model).current_epoch = epoch
            self.model.train()  # Set model to training mode

            logger = MetricLogger(delimiter="  ")
            logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
            header = 'Epoch: [{}/{}]'.format(epoch, self.num_epoch)
            print_freq = 20
            for data_iter_step, batch in enumerate(logger.log_every(self.train_dl, print_freq, header)):
                img, _ = batch
                img = img.to(self.device, non_blocking=True)
                self.steps += 1

                with self.accelerator.accumulate(self.model):
                    with self.accelerator.autocast():
                        if self.steps == 1:
                            print(f"Training batch size: {img.size(0)}")
                            print(f"Hello from index {self.accelerator.local_process_index}")
                        losses = self.model(img, epoch=epoch)
                        # combine
                        loss = sum([v for _, v in losses.items()])

                    self.accelerator.backward(loss)
                    if self.accelerator.sync_gradients and self.max_grad_norm is not None:
                        self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
                    self.g_optim.step()
                    if self.g_sched is not None:
                        self.g_sched.step_update(self.steps)
                    self.g_optim.zero_grad()

                self.accelerator.wait_for_everyone()

                # update ema with state dict
                if self.enable_ema:
                    self.ema_model.update(self.accelerator.unwrap_model(self.model))

                for key, value in losses.items():
                    logger.update(**{key: value.item()})
                logger.update(lr=self.g_optim.param_groups[0]["lr"])

                if self.steps % self.save_every == 0:
                    self.save()

                if (self.steps % self.sample_every == 0) or (self.steps % self.fid_every == 0):
                    empty_cache()
                    self.evaluate()
                    self.accelerator.wait_for_everyone()
                    empty_cache()

                write_dict = dict(epoch=epoch)
                for key, value in losses.items(): # omitted all_gather here
                    write_dict.update(**{key: value.item()})
                write_dict.update(lr=self.g_optim.param_groups[0]["lr"])
                self.accelerator.log(write_dict, step=self.steps)

            logger.synchronize_between_processes()
            if self.accelerator.is_main_process:
                print("Averaged stats:", logger)

        self.accelerator.end_training()
        self.save()
        if self.accelerator.is_main_process:
            print("Train finished!")

    def save(self):
        self.accelerator.wait_for_everyone()
        self.accelerator.save_state(
            os.path.join(self.model_saved_dir, f"step{self.steps}")
        )

    @torch.no_grad()
    def evaluate(self):
        self.model.eval()
        if not self.test_only:
            with tqdm(
                self.valid_dl,
                dynamic_ncols=True,
                disable=not self.accelerator.is_main_process,
            ) as valid_dl:
                for batch_i, batch in enumerate(valid_dl):
                    if isinstance(batch, tuple) or isinstance(batch, list):
                        img, targets = batch[0], batch[1]
                    else:
                        img = batch

                    with self.accelerator.autocast():
                        rec = self.model(img, sample=True, inference_with_n_slots=self.test_num_slots, cfg=1.0)
                    imgs_and_recs = torch.stack((img.to(rec.device), rec), dim=0)
                    imgs_and_recs = rearrange(imgs_and_recs, "r b ... -> (b r) ...")
                    imgs_and_recs = imgs_and_recs.detach().cpu().float()

                    grid = make_grid(
                        imgs_and_recs, nrow=6, normalize=True, value_range=(0, 1)
                    )
                    if self.accelerator.is_main_process:
                        save_image(
                            grid,
                            os.path.join(
                                self.image_saved_dir, f"step_{self.steps}_slots{self.test_num_slots}_{batch_i}.jpg"
                            ),
                        )

                    if self.cfg != 1.0:
                        with self.accelerator.autocast():
                            rec = self.model(img, sample=True, inference_with_n_slots=self.test_num_slots, cfg=self.cfg)

                        imgs_and_recs = torch.stack((img.to(rec.device), rec), dim=0)
                        imgs_and_recs = rearrange(imgs_and_recs, "r b ... -> (b r) ...")
                        imgs_and_recs = imgs_and_recs.detach().cpu().float()

                        grid = make_grid(
                            imgs_and_recs, nrow=6, normalize=True, value_range=(0, 1)
                        )
                        if self.accelerator.is_main_process:
                            save_image(
                                grid,
                                os.path.join(
                                    self.image_saved_dir, f"step_{self.steps}_cfg_{self.cfg}_slots{self.test_num_slots}_{batch_i}.jpg"
                                ),
                            )
        if (self.eval_fid and self.test_dl is not None) and (self.test_only or (self.steps % self.fid_every == 0)):
            real_dir = "./dataset/imagenet/val256"
            rec_dir = os.path.join(self.image_saved_dir, f"rec_step{self.steps}_slots{self.test_num_slots}")
            os.makedirs(rec_dir, exist_ok=True)
            
            if self.cfg != 1.0:
                rec_cfg_dir = os.path.join(self.image_saved_dir, f"rec_step{self.steps}_cfg_{self.cfg}_slots{self.test_num_slots}")
                os.makedirs(rec_cfg_dir, exist_ok=True)

            def process_batch(cfg_value, save_dir, header):
                logger = MetricLogger(delimiter="  ")
                print_freq = 5
                psnr_values = []
                ssim_values = []
                total_processed = 0
                
                for batch_i, batch in enumerate(logger.log_every(self.test_dl, print_freq, header)):
                    imgs, targets = (batch[0], batch[1]) if isinstance(batch, (tuple, list)) else (batch, None)
                    
                    # Skip processing if we've already processed all real samples
                    if total_processed >= self.test_dataset_size:
                        break
                        
                    imgs = imgs.to(self.device, non_blocking=True)
                    if targets is not None:
                        targets = targets.to(self.device, non_blocking=True)

                    with self.accelerator.autocast():
                        recs = self.model(imgs, sample=True, inference_with_n_slots=self.test_num_slots, cfg=cfg_value)

                    psnr_val = psnr(recs, imgs, data_range=1.0)
                    ssim_val = ssim(recs, imgs, data_range=1.0)
                    
                    recs = concat_all_gather(recs).detach()
                    psnr_val = concat_all_gather(psnr_val.view(1))
                    ssim_val = concat_all_gather(ssim_val.view(1))

                    # Remove padding after gathering from all GPUs
                    samples_in_batch = min(
                        recs.size(0),  # Always use the gathered size
                        self.test_dataset_size - total_processed
                    )
                    recs = recs[:samples_in_batch]
                    psnr_val = psnr_val[:samples_in_batch]
                    ssim_val = ssim_val[:samples_in_batch]
                    psnr_values.append(psnr_val)
                    ssim_values.append(ssim_val)

                    if self.accelerator.is_main_process:
                        rec_paths = [os.path.join(save_dir, f"step_{self.steps}_slots{self.test_num_slots}_{batch_i}_{j}_rec_cfg_{cfg_value}_slots{self.test_num_slots}.png") 
                                   for j in range(recs.size(0))]
                        save_img_batch(recs.cpu(), rec_paths)
                    
                    total_processed += samples_in_batch

                    self.accelerator.wait_for_everyone()
                    
                return torch.cat(psnr_values).mean(), torch.cat(ssim_values).mean()

            # Helper function to calculate and log metrics
            def calculate_and_log_metrics(real_dir, rec_dir, cfg_value, psnr_val, ssim_val):
                if self.accelerator.is_main_process:
                    metrics_dict = get_fid_stats(real_dir, rec_dir, self.fid_stats)
                    fid = metrics_dict["frechet_inception_distance"]
                    inception_score = metrics_dict["inception_score_mean"]
                    
                    metric_prefix = "fid"
                    isc_prefix = "isc"
                    self.accelerator.log({
                        metric_prefix: fid,
                        isc_prefix: inception_score,
                        f"psnr": psnr_val,
                        f"ssim": ssim_val,
                        "cfg": cfg_value
                    }, step=self.steps)
                    
                    print(f"{'CFG: {cfg_value}'} "
                          f"FID: {fid:.2f}, ISC: {inception_score:.2f}, "
                          f"PSNR: {psnr_val:.2f}, SSIM: {ssim_val:.4f}")

            # Process without CFG
            if self.cfg == 1.0 or not self.test_only:
                psnr_val, ssim_val = process_batch(1.0, rec_dir, 'Testing: w/o CFG')
                calculate_and_log_metrics(real_dir, rec_dir, 1.0, psnr_val, ssim_val)

            # Process with CFG if needed
            if self.cfg != 1.0:
                psnr_val, ssim_val = process_batch(self.cfg, rec_cfg_dir, 'Testing: w/ CFG')
                calculate_and_log_metrics(real_dir, rec_cfg_dir, self.cfg, psnr_val, ssim_val)

            # Cleanup
            if self.accelerator.is_main_process:
                shutil.rmtree(rec_dir)
                if self.cfg != 1.0:
                    shutil.rmtree(rec_cfg_dir)
        self.model.train()