Spaces:
Running
Running
File size: 21,416 Bytes
7b0a1ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
import os, torch
import os.path as osp
import shutil
from tqdm.auto import tqdm
from einops import rearrange
from accelerate import Accelerator
from torchvision.utils import make_grid, save_image
from torch.utils.data import DataLoader, random_split, DistributedSampler
from semanticist.utils.logger import SmoothedValue, MetricLogger, empty_cache
from accelerate.utils import DistributedDataParallelKwargs
from torchmetrics.functional.image import (
peak_signal_noise_ratio as psnr,
structural_similarity_index_measure as ssim
)
from semanticist.engine.trainer_utils import (
instantiate_from_config, concat_all_gather,
save_img_batch, get_fid_stats,
EMAModel, PaddedDataset, create_scheduler, load_state_dict,
load_safetensors, setup_result_folders, create_optimizer
)
class DiffusionTrainer:
def __init__(
self,
model,
dataset,
test_dataset=None,
test_only=False,
num_epoch=400,
valid_size=32,
blr=1e-4,
cosine_lr=True,
lr_min=0,
warmup_epochs=100,
warmup_steps=None,
warmup_lr_init=0,
decay_steps=None,
batch_size=32,
eval_bs=32,
test_bs=64,
num_workers=8,
pin_memory=False,
max_grad_norm=None,
grad_accum_steps=1,
precision='bf16',
save_every=10000,
sample_every=1000,
fid_every=50000,
result_folder=None,
log_dir="./log",
cfg=3.0,
test_num_slots=None,
eval_fid=False,
fid_stats=None,
enable_ema=False,
compile=False,
):
kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
self.accelerator = Accelerator(
kwargs_handlers=[kwargs],
mixed_precision=precision,
gradient_accumulation_steps=grad_accum_steps,
log_with="tensorboard",
project_dir=log_dir,
)
self.model = instantiate_from_config(model)
self.num_slots = model.params.num_slots
if test_dataset is not None:
test_dataset = instantiate_from_config(test_dataset)
self.test_ds = test_dataset
# Calculate padded dataset size to ensure even distribution
total_size = len(test_dataset)
world_size = self.accelerator.num_processes
padding_size = world_size * test_bs - (total_size % (world_size * test_bs))
self.test_dataset_size = total_size
self.test_ds = PaddedDataset(self.test_ds, padding_size)
self.test_dl = DataLoader(
self.test_ds,
batch_size=test_bs,
num_workers=num_workers,
pin_memory=pin_memory,
shuffle=False,
drop_last=True,
)
if self.accelerator.is_main_process:
print(f"test dataset size: {len(test_dataset)}, test batch size: {test_bs}")
else:
self.test_dl = None
self.test_only = test_only
if not test_only:
dataset = instantiate_from_config(dataset)
train_size = len(dataset) - valid_size
self.train_ds, self.valid_ds = random_split(
dataset,
[train_size, valid_size],
generator=torch.Generator().manual_seed(42),
)
if self.accelerator.is_main_process:
print(f"train dataset size: {train_size}, valid dataset size: {valid_size}")
sampler = DistributedSampler(
self.train_ds,
num_replicas=self.accelerator.num_processes,
rank=self.accelerator.process_index,
shuffle=True,
)
self.train_dl = DataLoader(
self.train_ds,
batch_size=batch_size,
sampler=sampler,
num_workers=num_workers,
pin_memory=pin_memory,
drop_last=True,
)
self.valid_dl = DataLoader(
self.valid_ds,
batch_size=eval_bs,
shuffle=False,
num_workers=num_workers,
pin_memory=pin_memory,
drop_last=False,
)
effective_bs = batch_size * grad_accum_steps * self.accelerator.num_processes
lr = blr * effective_bs / 256
if self.accelerator.is_main_process:
print(f"Effective batch size is {effective_bs}")
self.g_optim = create_optimizer(self.model, weight_decay=0.05, learning_rate=lr,) # accelerator=self.accelerator)
if warmup_epochs is not None:
warmup_steps = warmup_epochs * len(self.train_dl)
self.g_sched = create_scheduler(
self.g_optim,
num_epoch,
len(self.train_dl),
lr_min,
warmup_steps,
warmup_lr_init,
decay_steps,
cosine_lr
)
self.accelerator.register_for_checkpointing(self.g_sched)
self.model, self.g_optim, self.g_sched = self.accelerator.prepare(self.model, self.g_optim, self.g_sched)
else:
self.model, self.test_dl = self.accelerator.prepare(self.model, self.test_dl)
self.steps = 0
self.loaded_steps = -1
if compile:
_model = self.accelerator.unwrap_model(self.model)
_model.vae = torch.compile(_model.vae, mode="reduce-overhead")
_model.dit = torch.compile(_model.dit, mode="reduce-overhead")
# _model.encoder = torch.compile(_model.encoder, mode="reduce-overhead") # nan loss when compiled together with dit, no idea why
_model.encoder2slot = torch.compile(_model.encoder2slot, mode="reduce-overhead")
self.enable_ema = enable_ema
if self.enable_ema and not self.test_only: # when testing, we directly load the ema dict and skip here
self.ema_model = EMAModel(self.accelerator.unwrap_model(self.model), self.device)
self.accelerator.register_for_checkpointing(self.ema_model)
self._load_checkpoint(model.params.ckpt_path)
if self.test_only:
self.steps = self.loaded_steps
self.num_epoch = num_epoch
self.save_every = save_every
self.sample_every = sample_every
self.fid_every = fid_every
self.max_grad_norm = max_grad_norm
self.cfg = cfg
self.test_num_slots = test_num_slots
if self.test_num_slots is not None:
self.test_num_slots = min(self.test_num_slots, self.num_slots)
else:
self.test_num_slots = self.num_slots
eval_fid = eval_fid or model.params.eval_fid # legacy
self.eval_fid = eval_fid
if eval_fid:
if fid_stats is None:
fid_stats = model.params.fid_stats # legacy
assert fid_stats is not None
assert test_dataset is not None
self.fid_stats = fid_stats
self.result_folder = result_folder
self.model_saved_dir, self.image_saved_dir = setup_result_folders(result_folder)
@property
def device(self):
return self.accelerator.device
def _load_checkpoint(self, ckpt_path=None):
if ckpt_path is None or not osp.exists(ckpt_path):
return
model = self.accelerator.unwrap_model(self.model)
if osp.isdir(ckpt_path):
# ckpt_path is something like 'path/to/models/step10/'
self.loaded_steps = int(
ckpt_path.split("step")[-1].split("/")[0]
)
if not self.test_only:
self.accelerator.load_state(ckpt_path)
else:
if self.enable_ema:
model_path = osp.join(ckpt_path, "custom_checkpoint_1.pkl")
if osp.exists(model_path):
state_dict = torch.load(model_path, map_location="cpu")
load_state_dict(state_dict, model)
if self.accelerator.is_main_process:
print(f"Loaded ema model from {model_path}")
else:
model_path = osp.join(ckpt_path, "model.safetensors")
if osp.exists(model_path):
load_safetensors(model_path, model)
else:
# ckpt_path is something like 'path/to/models/step10.pt'
if ckpt_path.endswith(".safetensors"):
load_safetensors(ckpt_path, model)
else:
state_dict = torch.load(ckpt_path, map_location="cpu")
load_state_dict(state_dict, model)
if self.accelerator.is_main_process:
print(f"Loaded checkpoint from {ckpt_path}")
def train(self, config=None):
n_parameters = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
if self.accelerator.is_main_process:
print(f"number of learnable parameters: {n_parameters//1e6}M")
if config is not None:
# save the config
from omegaconf import OmegaConf
if isinstance(config, str) and osp.exists(config):
# If it's a path, copy the file to config.yaml
shutil.copy(config, osp.join(self.result_folder, "config.yaml"))
else:
# If it's an OmegaConf object, dump it
config_save_path = osp.join(self.result_folder, "config.yaml")
OmegaConf.save(config, config_save_path)
self.accelerator.init_trackers("semanticist")
if self.test_only:
empty_cache()
self.evaluate()
self.accelerator.wait_for_everyone()
empty_cache()
return
for epoch in range(self.num_epoch):
if ((epoch + 1) * len(self.train_dl)) <= self.loaded_steps:
if self.accelerator.is_main_process:
print(f"Epoch {epoch} is skipped because it is loaded from ckpt")
self.steps += len(self.train_dl)
continue
if self.steps < self.loaded_steps:
for _ in self.train_dl:
self.steps += 1
if self.steps >= self.loaded_steps:
break
self.accelerator.unwrap_model(self.model).current_epoch = epoch
self.model.train() # Set model to training mode
logger = MetricLogger(delimiter=" ")
logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}/{}]'.format(epoch, self.num_epoch)
print_freq = 20
for data_iter_step, batch in enumerate(logger.log_every(self.train_dl, print_freq, header)):
img, _ = batch
img = img.to(self.device, non_blocking=True)
self.steps += 1
with self.accelerator.accumulate(self.model):
with self.accelerator.autocast():
if self.steps == 1:
print(f"Training batch size: {img.size(0)}")
print(f"Hello from index {self.accelerator.local_process_index}")
losses = self.model(img, epoch=epoch)
# combine
loss = sum([v for _, v in losses.items()])
self.accelerator.backward(loss)
if self.accelerator.sync_gradients and self.max_grad_norm is not None:
self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
self.g_optim.step()
if self.g_sched is not None:
self.g_sched.step_update(self.steps)
self.g_optim.zero_grad()
self.accelerator.wait_for_everyone()
# update ema with state dict
if self.enable_ema:
self.ema_model.update(self.accelerator.unwrap_model(self.model))
for key, value in losses.items():
logger.update(**{key: value.item()})
logger.update(lr=self.g_optim.param_groups[0]["lr"])
if self.steps % self.save_every == 0:
self.save()
if (self.steps % self.sample_every == 0) or (self.steps % self.fid_every == 0):
empty_cache()
self.evaluate()
self.accelerator.wait_for_everyone()
empty_cache()
write_dict = dict(epoch=epoch)
for key, value in losses.items(): # omitted all_gather here
write_dict.update(**{key: value.item()})
write_dict.update(lr=self.g_optim.param_groups[0]["lr"])
self.accelerator.log(write_dict, step=self.steps)
logger.synchronize_between_processes()
if self.accelerator.is_main_process:
print("Averaged stats:", logger)
self.accelerator.end_training()
self.save()
if self.accelerator.is_main_process:
print("Train finished!")
def save(self):
self.accelerator.wait_for_everyone()
self.accelerator.save_state(
os.path.join(self.model_saved_dir, f"step{self.steps}")
)
@torch.no_grad()
def evaluate(self):
self.model.eval()
if not self.test_only:
with tqdm(
self.valid_dl,
dynamic_ncols=True,
disable=not self.accelerator.is_main_process,
) as valid_dl:
for batch_i, batch in enumerate(valid_dl):
if isinstance(batch, tuple) or isinstance(batch, list):
img, targets = batch[0], batch[1]
else:
img = batch
with self.accelerator.autocast():
rec = self.model(img, sample=True, inference_with_n_slots=self.test_num_slots, cfg=1.0)
imgs_and_recs = torch.stack((img.to(rec.device), rec), dim=0)
imgs_and_recs = rearrange(imgs_and_recs, "r b ... -> (b r) ...")
imgs_and_recs = imgs_and_recs.detach().cpu().float()
grid = make_grid(
imgs_and_recs, nrow=6, normalize=True, value_range=(0, 1)
)
if self.accelerator.is_main_process:
save_image(
grid,
os.path.join(
self.image_saved_dir, f"step_{self.steps}_slots{self.test_num_slots}_{batch_i}.jpg"
),
)
if self.cfg != 1.0:
with self.accelerator.autocast():
rec = self.model(img, sample=True, inference_with_n_slots=self.test_num_slots, cfg=self.cfg)
imgs_and_recs = torch.stack((img.to(rec.device), rec), dim=0)
imgs_and_recs = rearrange(imgs_and_recs, "r b ... -> (b r) ...")
imgs_and_recs = imgs_and_recs.detach().cpu().float()
grid = make_grid(
imgs_and_recs, nrow=6, normalize=True, value_range=(0, 1)
)
if self.accelerator.is_main_process:
save_image(
grid,
os.path.join(
self.image_saved_dir, f"step_{self.steps}_cfg_{self.cfg}_slots{self.test_num_slots}_{batch_i}.jpg"
),
)
if (self.eval_fid and self.test_dl is not None) and (self.test_only or (self.steps % self.fid_every == 0)):
real_dir = "./dataset/imagenet/val256"
rec_dir = os.path.join(self.image_saved_dir, f"rec_step{self.steps}_slots{self.test_num_slots}")
os.makedirs(rec_dir, exist_ok=True)
if self.cfg != 1.0:
rec_cfg_dir = os.path.join(self.image_saved_dir, f"rec_step{self.steps}_cfg_{self.cfg}_slots{self.test_num_slots}")
os.makedirs(rec_cfg_dir, exist_ok=True)
def process_batch(cfg_value, save_dir, header):
logger = MetricLogger(delimiter=" ")
print_freq = 5
psnr_values = []
ssim_values = []
total_processed = 0
for batch_i, batch in enumerate(logger.log_every(self.test_dl, print_freq, header)):
imgs, targets = (batch[0], batch[1]) if isinstance(batch, (tuple, list)) else (batch, None)
# Skip processing if we've already processed all real samples
if total_processed >= self.test_dataset_size:
break
imgs = imgs.to(self.device, non_blocking=True)
if targets is not None:
targets = targets.to(self.device, non_blocking=True)
with self.accelerator.autocast():
recs = self.model(imgs, sample=True, inference_with_n_slots=self.test_num_slots, cfg=cfg_value)
psnr_val = psnr(recs, imgs, data_range=1.0)
ssim_val = ssim(recs, imgs, data_range=1.0)
recs = concat_all_gather(recs).detach()
psnr_val = concat_all_gather(psnr_val.view(1))
ssim_val = concat_all_gather(ssim_val.view(1))
# Remove padding after gathering from all GPUs
samples_in_batch = min(
recs.size(0), # Always use the gathered size
self.test_dataset_size - total_processed
)
recs = recs[:samples_in_batch]
psnr_val = psnr_val[:samples_in_batch]
ssim_val = ssim_val[:samples_in_batch]
psnr_values.append(psnr_val)
ssim_values.append(ssim_val)
if self.accelerator.is_main_process:
rec_paths = [os.path.join(save_dir, f"step_{self.steps}_slots{self.test_num_slots}_{batch_i}_{j}_rec_cfg_{cfg_value}_slots{self.test_num_slots}.png")
for j in range(recs.size(0))]
save_img_batch(recs.cpu(), rec_paths)
total_processed += samples_in_batch
self.accelerator.wait_for_everyone()
return torch.cat(psnr_values).mean(), torch.cat(ssim_values).mean()
# Helper function to calculate and log metrics
def calculate_and_log_metrics(real_dir, rec_dir, cfg_value, psnr_val, ssim_val):
if self.accelerator.is_main_process:
metrics_dict = get_fid_stats(real_dir, rec_dir, self.fid_stats)
fid = metrics_dict["frechet_inception_distance"]
inception_score = metrics_dict["inception_score_mean"]
metric_prefix = "fid"
isc_prefix = "isc"
self.accelerator.log({
metric_prefix: fid,
isc_prefix: inception_score,
f"psnr": psnr_val,
f"ssim": ssim_val,
"cfg": cfg_value
}, step=self.steps)
print(f"{'CFG: {cfg_value}'} "
f"FID: {fid:.2f}, ISC: {inception_score:.2f}, "
f"PSNR: {psnr_val:.2f}, SSIM: {ssim_val:.4f}")
# Process without CFG
if self.cfg == 1.0 or not self.test_only:
psnr_val, ssim_val = process_batch(1.0, rec_dir, 'Testing: w/o CFG')
calculate_and_log_metrics(real_dir, rec_dir, 1.0, psnr_val, ssim_val)
# Process with CFG if needed
if self.cfg != 1.0:
psnr_val, ssim_val = process_batch(self.cfg, rec_cfg_dir, 'Testing: w/ CFG')
calculate_and_log_metrics(real_dir, rec_cfg_dir, self.cfg, psnr_val, ssim_val)
# Cleanup
if self.accelerator.is_main_process:
shutil.rmtree(rec_dir)
if self.cfg != 1.0:
shutil.rmtree(rec_cfg_dir)
self.model.train() |