File size: 8,979 Bytes
7b0a1ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os, torch
import cv2
import numpy as np
import torch_fidelity
from collections import OrderedDict
from concurrent.futures import ThreadPoolExecutor
import importlib
from torch.optim import AdamW
from semanticist.utils.lr_scheduler import build_scheduler


def get_obj_from_str(string, reload=False):
    """Get object from string path."""
    module, cls = string.rsplit(".", 1)
    if reload:
        module_imp = importlib.import_module(module)
        importlib.reload(module_imp)
    return getattr(importlib.import_module(module, package=None), cls)


def instantiate_from_config(config):
    """Instantiate an object from a config dictionary."""
    if not "target" in config:
        raise KeyError("Expected key `target` to instantiate.")
    return get_obj_from_str(config["target"])(**config.get("params", dict()))


def is_dist_avail_and_initialized():
    """Check if distributed training is available and initialized."""
    if not torch.distributed.is_initialized():
        return False
    return True


def is_main_process():
    """Check if the current process is the main process."""
    return not is_dist_avail_and_initialized() or torch.distributed.get_rank() == 0


def concat_all_gather(tensor):
    """
    Performs all_gather operation on the provided tensors.
    *** Warning ***: torch.distributed.all_gather has no gradient.
    """
    tensors_gather = [torch.ones_like(tensor)
        for _ in range(torch.distributed.get_world_size())]
    torch.distributed.all_gather(tensors_gather, tensor, async_op=False)

    output = torch.cat(tensors_gather, dim=0)
    return output


def requires_grad(model, flag=True):
    """Set requires_grad flag for all model parameters."""
    for p in model.parameters():
        p.requires_grad = flag


def save_img(img, save_path):
    """Save a single image to disk."""
    img = np.clip(img.float().numpy().transpose([1, 2, 0]) * 255, 0, 255)
    img = img.astype(np.uint8)[:, :, ::-1]
    cv2.imwrite(save_path, img)


def save_img_batch(imgs, save_paths):
    """Process and save multiple images at once using a thread pool."""
    # Convert to numpy and prepare all images in one go
    imgs = np.clip(imgs.float().numpy().transpose(0, 2, 3, 1) * 255, 0, 255).astype(np.uint8)
    imgs = imgs[:, :, :, ::-1]  # RGB to BGR for all images at once
    
    with ThreadPoolExecutor(max_workers=32) as pool:
        # Submit all tasks at once
        futures = [pool.submit(cv2.imwrite, path, img) 
                  for path, img in zip(save_paths, imgs)]
        # Wait for all tasks to complete
        for future in futures:
            future.result()  # This will raise any exceptions that occurred


def get_fid_stats(real_dir, rec_dir, fid_stats):
    """Calculate FID statistics between real and reconstructed images."""
    stats = torch_fidelity.calculate_metrics(
        input1=rec_dir,
        input2=real_dir,
        fid_statistics_file=fid_stats,
        cuda=True,
        isc=True,
        fid=True,
        kid=False,
        prc=False,
        verbose=False,
    )
    return stats


def create_scheduler(optimizer, num_epoch, steps_per_epoch, lr_min, warmup_steps, 
                    warmup_lr_init, decay_steps, cosine_lr):
    """Create a learning rate scheduler."""
    scheduler = build_scheduler(
        optimizer,
        num_epoch,
        steps_per_epoch,
        lr_min,
        warmup_steps,
        warmup_lr_init,
        decay_steps,
        cosine_lr,
    )
    return scheduler


def load_state_dict(state_dict, model):
    """Helper to load a state dict with proper prefix handling."""
    if 'state_dict' in state_dict:
        state_dict = state_dict['state_dict']
    # Remove '_orig_mod' prefix if present
    state_dict = {k.replace('_orig_mod.', ''): v for k, v in state_dict.items()}
    missing, unexpected = model.load_state_dict(
        state_dict, strict=False
    )
    if is_main_process():
        print(f"Loaded model. Missing: {missing}, Unexpected: {unexpected}")


def load_safetensors(path, model):
    """Helper to load a safetensors checkpoint."""
    from safetensors.torch import safe_open
    with safe_open(path, framework="pt", device="cpu") as f:
        state_dict = {k: f.get_tensor(k) for k in f.keys()}
    load_state_dict(state_dict, model)


def setup_result_folders(result_folder):
    """Setup result folders for saving models and images."""
    model_saved_dir = os.path.join(result_folder, "models")
    os.makedirs(model_saved_dir, exist_ok=True)

    image_saved_dir = os.path.join(result_folder, "images")
    os.makedirs(image_saved_dir, exist_ok=True)
    
    return model_saved_dir, image_saved_dir


def create_optimizer(model, weight_decay, learning_rate, betas=(0.9, 0.95)):
    """Create an AdamW optimizer with weight decay for 2D parameters only."""
    # start with all of the candidate parameters
    param_dict = {pn: p for pn, p in model.named_parameters()}
    # filter out those that do not require grad
    param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
    # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
    # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
    decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
    nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
    optim_groups = [
        {'params': decay_params, 'weight_decay': weight_decay},
        {'params': nodecay_params, 'weight_decay': 0.0}
    ]
    num_decay_params = sum(p.numel() for p in decay_params)
    num_nodecay_params = sum(p.numel() for p in nodecay_params)
    if is_main_process():
        print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
        print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
    optimizer = AdamW(optim_groups, lr=learning_rate, betas=betas)
    return optimizer


class EMAModel:
    """Model Exponential Moving Average."""
    def __init__(self, model, device, decay=0.999):
        self.device = device
        self.decay = decay
        self.ema_params = OrderedDict(
            (name, param.clone().detach().to(device))
            for name, param in model.named_parameters()
            if param.requires_grad
        )

    @torch.no_grad()
    def update(self, model):
        for name, param in model.named_parameters():
            if param.requires_grad:
                if name in self.ema_params:
                    self.ema_params[name].lerp_(param.data, 1 - self.decay)
                else:
                    self.ema_params[name] = param.data.clone().detach()

    def state_dict(self):
        return self.ema_params

    def load_state_dict(self, params):
        self.ema_params = OrderedDict(
            (name, param.clone().detach().to(self.device))
            for name, param in params.items()
        )


class PaddedDataset(torch.utils.data.Dataset):
    """Dataset wrapper that pads a dataset to ensure even distribution across processes."""
    def __init__(self, dataset, padding_size):
        self.dataset = dataset
        self.padding_size = padding_size
        
    def __len__(self):
        return len(self.dataset) + self.padding_size
        
    def __getitem__(self, idx):
        if idx < len(self.dataset):
            return self.dataset[idx]
        return self.dataset[0]

class CacheDataLoader:
    """DataLoader-like interface for cached data with epoch-based shuffling."""
    def __init__(self, slots, targets=None, batch_size=32, num_augs=1, seed=None):
        self.slots = slots
        self.targets = targets
        self.batch_size = batch_size
        self.num_augs = num_augs
        self.seed = seed
        self.epoch = 0
        # Original dataset size (before augmentations)
        self.num_samples = len(slots) // num_augs
    
    def set_epoch(self, epoch):
        """Set epoch for deterministic shuffling."""
        self.epoch = epoch
    
    def __len__(self):
        """Return number of batches based on original dataset size."""
        return self.num_samples // self.batch_size
    
    def __iter__(self):
        """Return random indices for current epoch."""
        g = torch.Generator()
        g.manual_seed(self.seed + self.epoch if self.seed is not None else self.epoch)
        
        # Randomly sample indices from the entire augmented dataset
        indices = torch.randint(
            0, len(self.slots), 
            (self.num_samples,), 
            generator=g
        ).numpy()
        
        # Yield batches of indices
        for start in range(0, self.num_samples, self.batch_size):
            end = min(start + self.batch_size, self.num_samples)
            batch_indices = indices[start:end]
            yield (
                torch.from_numpy(self.slots[batch_indices]),
                torch.from_numpy(self.targets[batch_indices])
            )