tennant's picture
upload
7b0a1ef
import os, torch
import os.path as osp
import shutil
import numpy as np
import copy
import torch.nn as nn
from tqdm.auto import tqdm
from accelerate import Accelerator
from torchvision.utils import make_grid, save_image
from torch.utils.data import DataLoader, DistributedSampler
from semanticist.utils.logger import SmoothedValue, MetricLogger, empty_cache
from accelerate.utils import DistributedDataParallelKwargs
from semanticist.stage2.gpt import GPT_models
from semanticist.stage2.generate import generate
from pathlib import Path
import time
from semanticist.engine.trainer_utils import (
instantiate_from_config, concat_all_gather,
save_img_batch, get_fid_stats,
EMAModel, create_scheduler, load_state_dict, load_safetensors,
setup_result_folders, create_optimizer,
CacheDataLoader
)
class GPTTrainer(nn.Module):
def __init__(
self,
ae_model,
gpt_model,
dataset,
test_only=False,
num_test_images=50000,
num_epoch=400,
eval_classes=[1, 7, 282, 604, 724, 207, 250, 751, 404, 850], # goldfish, cock, tiger cat, hourglass, ship, golden retriever, husky, race car, airliner, teddy bear
blr=1e-4,
cosine_lr=False,
lr_min=0,
warmup_epochs=100,
warmup_steps=None,
warmup_lr_init=0,
decay_steps=None,
batch_size=32,
cache_bs=8,
test_bs=100,
num_workers=8,
pin_memory=False,
max_grad_norm=None,
grad_accum_steps=1,
precision='bf16',
save_every=10000,
sample_every=1000,
fid_every=50000,
result_folder=None,
log_dir="./log",
ae_cfg=1.0,
cfg=6.0,
cfg_schedule="linear",
temperature=1.0,
train_num_slots=None,
test_num_slots=None,
eval_fid=False,
fid_stats=None,
enable_ema=False,
compile=False,
enable_cache_latents=True,
cache_dir='/dev/shm/slot_cache'
):
super().__init__()
kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
self.accelerator = Accelerator(
kwargs_handlers=[kwargs],
mixed_precision=precision,
gradient_accumulation_steps=grad_accum_steps,
log_with="tensorboard",
project_dir=log_dir,
)
self.ae_model = instantiate_from_config(ae_model)
ae_model_path = ae_model.params.ckpt_path
assert ae_model_path.endswith(".safetensors") or ae_model_path.endswith(".pt") or ae_model_path.endswith(".pth") or ae_model_path.endswith(".pkl")
assert osp.exists(ae_model_path), f"AE model checkpoint {ae_model_path} does not exist"
self._load_checkpoint(ae_model_path, self.ae_model)
self.ae_model.to(self.device)
for param in self.ae_model.parameters():
param.requires_grad = False
self.ae_model.eval()
self.model_name = gpt_model.target
if 'GPT' in gpt_model.target:
self.gpt_model = GPT_models[gpt_model.target](**gpt_model.params)
else:
raise ValueError(f"Unknown model type: {gpt_model.target}")
self.num_slots = ae_model.params.num_slots
self.slot_dim = ae_model.params.slot_dim
self.test_only = test_only
self.test_bs = test_bs
self.num_test_images = num_test_images
self.num_classes = gpt_model.params.num_classes
self.batch_size = batch_size
if not test_only:
self.train_ds = instantiate_from_config(dataset)
train_size = len(self.train_ds)
if self.accelerator.is_main_process:
print(f"train dataset size: {train_size}")
sampler = DistributedSampler(
self.train_ds,
num_replicas=self.accelerator.num_processes,
rank=self.accelerator.process_index,
shuffle=True,
)
self.train_dl = DataLoader(
self.train_ds,
batch_size=batch_size if not enable_cache_latents else cache_bs,
sampler=sampler,
num_workers=num_workers,
pin_memory=pin_memory,
drop_last=True,
)
effective_bs = batch_size * grad_accum_steps * self.accelerator.num_processes
lr = blr * effective_bs / 256
if self.accelerator.is_main_process:
print(f"Effective batch size is {effective_bs}")
self.g_optim = create_optimizer(self.gpt_model, weight_decay=0.05, learning_rate=lr)
if warmup_epochs is not None:
warmup_steps = warmup_epochs * len(self.train_dl)
self.g_sched = create_scheduler(
self.g_optim,
num_epoch,
len(self.train_dl),
lr_min,
warmup_steps,
warmup_lr_init,
decay_steps,
cosine_lr
)
self.accelerator.register_for_checkpointing(self.g_sched)
self.gpt_model, self.g_optim, self.g_sched = self.accelerator.prepare(self.gpt_model, self.g_optim, self.g_sched)
else:
self.gpt_model = self.accelerator.prepare(self.gpt_model)
self.steps = 0
self.loaded_steps = -1
if compile:
self.ae_model = torch.compile(self.ae_model, mode="reduce-overhead")
_model = self.accelerator.unwrap_model(self.gpt_model)
_model = torch.compile(_model, mode="reduce-overhead")
self.enable_ema = enable_ema
if self.enable_ema and not self.test_only: # when testing, we directly load the ema dict and skip here
self.ema_model = EMAModel(self.accelerator.unwrap_model(self.gpt_model), self.device)
self.accelerator.register_for_checkpointing(self.ema_model)
self._load_checkpoint(gpt_model.params.ckpt_path)
if self.test_only:
self.steps = self.loaded_steps
self.num_epoch = num_epoch
self.save_every = save_every
self.sample_every = sample_every
self.fid_every = fid_every
self.max_grad_norm = max_grad_norm
self.eval_classes = eval_classes
self.cfg = cfg
self.ae_cfg = ae_cfg
self.cfg_schedule = cfg_schedule
self.temperature = temperature
self.train_num_slots = train_num_slots
self.test_num_slots = test_num_slots
if self.train_num_slots is not None:
self.train_num_slots = min(self.train_num_slots, self.num_slots)
else:
self.train_num_slots = self.num_slots
if self.test_num_slots is not None:
self.num_slots_to_gen = min(self.test_num_slots, self.train_num_slots)
else:
self.num_slots_to_gen = self.train_num_slots
self.eval_fid = eval_fid
if eval_fid:
assert fid_stats is not None
self.fid_stats = fid_stats
# Setup result folders
self.result_folder = result_folder
self.model_saved_dir, self.image_saved_dir = setup_result_folders(result_folder)
# Setup cache
self.cache_dir = Path(cache_dir)
self.enable_cache_latents = enable_cache_latents
self.cache_loader = None
@property
def device(self):
return self.accelerator.device
def _load_checkpoint(self, ckpt_path=None, model=None):
if ckpt_path is None or not osp.exists(ckpt_path):
return
if model is None:
model = self.accelerator.unwrap_model(self.gpt_model)
if osp.isdir(ckpt_path):
self.loaded_steps = int(
ckpt_path.split("step")[-1].split("/")[0]
)
if not self.test_only:
self.accelerator.load_state(ckpt_path)
else:
if self.enable_ema:
model_path = osp.join(ckpt_path, "custom_checkpoint_1.pkl")
if osp.exists(model_path):
state_dict = torch.load(model_path, map_location="cpu")
load_state_dict(state_dict, model)
if self.accelerator.is_main_process:
print(f"Loaded ema model from {model_path}")
else:
model_path = osp.join(ckpt_path, "model.safetensors")
if osp.exists(model_path):
load_safetensors(model_path, model)
else:
if ckpt_path.endswith(".safetensors"):
load_safetensors(ckpt_path, model)
else:
state_dict = torch.load(ckpt_path, map_location="cpu")
load_state_dict(state_dict, model)
if self.accelerator.is_main_process:
print(f"Loaded checkpoint from {ckpt_path}")
def _build_cache(self):
"""Build cache for slots and targets."""
rank = self.accelerator.process_index
world_size = self.accelerator.num_processes
# Clean up any existing cache files first
slots_file = self.cache_dir / f"slots_rank{rank}_of_{world_size}.mmap"
targets_file = self.cache_dir / f"targets_rank{rank}_of_{world_size}.mmap"
if slots_file.exists():
os.remove(slots_file)
if targets_file.exists():
os.remove(targets_file)
dataset_size = len(self.train_dl.dataset)
shard_size = dataset_size // world_size
# Detect number of augmentations from first batch
with torch.no_grad():
sample_batch = next(iter(self.train_dl))
img, _ = sample_batch
num_augs = img.shape[1] if len(img.shape) == 5 else 1
print(f"Rank {rank}: Creating new cache with {num_augs} augmentations per image...")
os.makedirs(self.cache_dir, exist_ok=True)
slots_file = self.cache_dir / f"slots_rank{rank}_of_{world_size}.mmap"
targets_file = self.cache_dir / f"targets_rank{rank}_of_{world_size}.mmap"
# Create memory-mapped files
slots_mmap = np.memmap(
slots_file,
dtype='float32',
mode='w+',
shape=(shard_size * num_augs, self.train_num_slots, self.slot_dim)
)
targets_mmap = np.memmap(
targets_file,
dtype='int64',
mode='w+',
shape=(shard_size * num_augs,)
)
# Cache data
with torch.no_grad():
for i, batch in enumerate(tqdm(
self.train_dl,
desc=f"Rank {rank}: Caching data",
disable=not self.accelerator.is_local_main_process
)):
imgs, targets = batch
if len(imgs.shape) == 5: # [B, num_augs, C, H, W]
B, A, C, H, W = imgs.shape
imgs = imgs.view(-1, C, H, W) # [B*num_augs, C, H, W]
targets = targets.unsqueeze(1).expand(-1, A).reshape(-1) # [B*num_augs]
# Split imgs into n chunks
num_splits = num_augs
split_size = imgs.shape[0] // num_splits
imgs_splits = torch.split(imgs, split_size)
targets_splits = torch.split(targets, split_size)
start_idx = i * self.train_dl.batch_size * num_augs
for split_idx, (img_split, targets_split) in enumerate(zip(imgs_splits, targets_splits)):
img_split = img_split.to(self.device, non_blocking=True)
slots_split = self.ae_model.encode_slots(img_split)[:, :self.train_num_slots, :]
split_start = start_idx + (split_idx * split_size)
split_end = split_start + img_split.shape[0]
# Write directly to mmap files
slots_mmap[split_start:split_end] = slots_split.cpu().numpy()
targets_mmap[split_start:split_end] = targets_split.numpy()
# Close the mmap files
del slots_mmap
del targets_mmap
# Reopen in read mode
self.cached_latents = np.memmap(
slots_file,
dtype='float32',
mode='r',
shape=(shard_size * num_augs, self.train_num_slots, self.slot_dim)
)
self.cached_targets = np.memmap(
targets_file,
dtype='int64',
mode='r',
shape=(shard_size * num_augs,)
)
# Store the number of augmentations for the cache loader
self.num_augs = num_augs
def _setup_cache(self):
"""Setup cache if enabled."""
self._build_cache()
self.accelerator.wait_for_everyone()
# Initialize cache loader if cache exists
if self.cached_latents is not None:
self.cache_loader = CacheDataLoader(
slots=self.cached_latents,
targets=self.cached_targets,
batch_size=self.batch_size,
num_augs=self.num_augs,
seed=42 + self.accelerator.process_index
)
def __del__(self):
"""Cleanup cache files."""
if self.enable_cache_latents:
rank = self.accelerator.process_index
world_size = self.accelerator.num_processes
# Clean up slots cache
slots_file = self.cache_dir / f"slots_rank{rank}_of_{world_size}.mmap"
if slots_file.exists():
os.remove(slots_file)
# Clean up targets cache
targets_file = self.cache_dir / f"targets_rank{rank}_of_{world_size}.mmap"
if targets_file.exists():
os.remove(targets_file)
def _train_step(self, slots, targets=None):
"""Execute single training step."""
with self.accelerator.accumulate(self.gpt_model):
with self.accelerator.autocast():
loss = self.gpt_model(slots, targets)
self.accelerator.backward(loss)
if self.accelerator.sync_gradients and self.max_grad_norm is not None:
self.accelerator.clip_grad_norm_(self.gpt_model.parameters(), self.max_grad_norm)
self.g_optim.step()
if self.g_sched is not None:
self.g_sched.step_update(self.steps)
self.g_optim.zero_grad()
# Update EMA model if enabled
if self.enable_ema:
self.ema_model.update(self.accelerator.unwrap_model(self.gpt_model))
return loss
def _train_epoch_cached(self, epoch, logger):
"""Train one epoch using cached data."""
self.cache_loader.set_epoch(epoch)
header = f'Epoch: [{epoch}/{self.num_epoch}]'
for batch in logger.log_every(self.cache_loader, 20, header):
slots, targets = (b.to(self.device, non_blocking=True) for b in batch)
self.steps += 1
if self.steps == 1:
print(f"Training batch size: {len(slots)}")
print(f"Hello from index {self.accelerator.local_process_index}")
loss = self._train_step(slots, targets)
self._handle_periodic_ops(loss, logger)
def _train_epoch_uncached(self, epoch, logger):
"""Train one epoch using raw data."""
header = f'Epoch: [{epoch}/{self.num_epoch}]'
for batch in logger.log_every(self.train_dl, 20, header):
img, targets = (b.to(self.device, non_blocking=True) for b in batch)
self.steps += 1
if self.steps == 1:
print(f"Training batch size: {img.size(0)}")
print(f"Hello from index {self.accelerator.local_process_index}")
slots = self.ae_model.encode_slots(img)[:, :self.train_num_slots, :]
loss = self._train_step(slots, targets)
self._handle_periodic_ops(loss, logger)
def _handle_periodic_ops(self, loss, logger):
"""Handle periodic operations and logging."""
logger.update(loss=loss.item())
logger.update(lr=self.g_optim.param_groups[0]["lr"])
if self.steps % self.save_every == 0:
self.save()
if (self.steps % self.sample_every == 0) or (self.eval_fid and self.steps % self.fid_every == 0):
empty_cache()
self.evaluate()
self.accelerator.wait_for_everyone()
empty_cache()
def _save_config(self, config):
"""Save configuration file."""
if config is not None and self.accelerator.is_main_process:
import shutil
from omegaconf import OmegaConf
if isinstance(config, str) and osp.exists(config):
shutil.copy(config, osp.join(self.result_folder, "config.yaml"))
else:
config_save_path = osp.join(self.result_folder, "config.yaml")
OmegaConf.save(config, config_save_path)
def _should_skip_epoch(self, epoch):
"""Check if epoch should be skipped due to loaded checkpoint."""
loader = self.train_dl if not self.enable_cache_latents else self.cache_loader
if ((epoch + 1) * len(loader)) <= self.loaded_steps:
if self.accelerator.is_main_process:
print(f"Epoch {epoch} is skipped because it is loaded from ckpt")
self.steps += len(loader)
return True
if self.steps < self.loaded_steps:
for _ in loader:
self.steps += 1
if self.steps >= self.loaded_steps:
break
return False
def train(self, config=None):
"""Main training loop."""
# Initial setup
n_parameters = sum(p.numel() for p in self.parameters() if p.requires_grad)
if self.accelerator.is_main_process:
print(f"number of learnable parameters: {n_parameters//1e6}M")
self._save_config(config)
self.accelerator.init_trackers("gpt")
# Handle test-only mode
if self.test_only:
empty_cache()
self.evaluate()
self.accelerator.wait_for_everyone()
empty_cache()
return
# Setup cache if enabled
if self.enable_cache_latents:
self._setup_cache()
# Training loop
for epoch in range(self.num_epoch):
if self._should_skip_epoch(epoch):
continue
self.gpt_model.train()
logger = MetricLogger(delimiter=" ")
logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
# Choose training path based on cache availability
if self.enable_cache_latents:
self._train_epoch_cached(epoch, logger)
else:
self._train_epoch_uncached(epoch, logger)
# Synchronize and log epoch stats
logger.synchronize_between_processes()
if self.accelerator.is_main_process:
print("Averaged stats:", logger)
# Finish training
self.accelerator.end_training()
self.save()
if self.accelerator.is_main_process:
print("Train finished!")
def save(self):
self.accelerator.wait_for_everyone()
self.accelerator.save_state(
os.path.join(self.model_saved_dir, f"step{self.steps}")
)
@torch.no_grad()
def evaluate(self, use_ema=True):
self.gpt_model.eval()
unwraped_gpt_model = self.accelerator.unwrap_model(self.gpt_model)
# switch to ema params, only when eval_fid is True
# if test_only, we directly load the ema dict and skip here
use_ema = use_ema and self.enable_ema and self.eval_fid and not self.test_only
if use_ema:
if hasattr(self, "ema_model"):
model_without_ddp = self.accelerator.unwrap_model(self.gpt_model)
model_state_dict = copy.deepcopy(model_without_ddp.state_dict())
ema_state_dict = copy.deepcopy(model_without_ddp.state_dict())
for i, (name, _value) in enumerate(model_without_ddp.named_parameters()):
if "nested_sampler" in name:
continue
ema_state_dict[name] = self.ema_model.state_dict()[name]
if self.accelerator.is_main_process:
print("Switch to ema")
model_without_ddp.load_state_dict(ema_state_dict)
else:
print("EMA model not found, using original model")
use_ema = False
if not self.test_only:
classes = torch.tensor(self.eval_classes, device=self.device)
with self.accelerator.autocast():
slots = generate(unwraped_gpt_model, classes, self.num_slots_to_gen, cfg_scale=self.cfg, cfg_schedule=self.cfg_schedule, temperature=self.temperature)
if self.num_slots_to_gen < self.num_slots:
null_slots = self.ae_model.dit.null_cond.expand(slots.shape[0], -1, -1)
null_slots = null_slots[:, self.num_slots_to_gen:, :]
slots = torch.cat([slots, null_slots], dim=1)
imgs = self.ae_model.sample(slots, targets=classes, cfg=self.ae_cfg) # targets are not used for now
imgs = concat_all_gather(imgs)
if self.accelerator.num_processes > 16:
imgs = imgs[:16*len(self.eval_classes)]
imgs = imgs.detach().cpu()
grid = make_grid(
imgs, nrow=len(self.eval_classes), normalize=True, value_range=(0, 1)
)
if self.accelerator.is_main_process:
save_image(
grid,
os.path.join(
self.image_saved_dir, f"step{self.steps}_aecfg-{self.ae_cfg}_cfg-{self.cfg_schedule}-{self.cfg}_slots{self.num_slots_to_gen}_temp{self.temperature}.jpg"
),
)
if self.eval_fid and (self.test_only or (self.steps % self.fid_every == 0)):
# Create output directory (only on main process)
save_folder = os.path.join(self.image_saved_dir, f"gen_step{self.steps}_aecfg-{self.ae_cfg}_cfg-{self.cfg_schedule}-{self.cfg}_slots{self.num_slots_to_gen}_temp{self.temperature}")
if self.accelerator.is_main_process:
os.makedirs(save_folder, exist_ok=True)
# Setup for distributed generation
world_size = self.accelerator.num_processes
local_rank = self.accelerator.process_index
batch_size = self.test_bs
# Create balanced class distribution
num_classes = self.num_classes
images_per_class = self.num_test_images // num_classes
class_labels = np.repeat(np.arange(num_classes), images_per_class)
# Shuffle the class labels to ensure random ordering
np.random.shuffle(class_labels)
total_images = len(class_labels)
padding_size = world_size * batch_size - (total_images % (world_size * batch_size))
class_labels = np.pad(class_labels, (0, padding_size), 'constant')
padded_total_images = len(class_labels)
# Distribute workload across GPUs
images_per_gpu = padded_total_images // world_size
start_idx = local_rank * images_per_gpu
end_idx = min(start_idx + images_per_gpu, padded_total_images)
local_class_labels = class_labels[start_idx:end_idx]
local_num_steps = len(local_class_labels) // batch_size
if self.accelerator.is_main_process:
print(f"Generating {total_images} images ({images_per_class} per class) across {world_size} GPUs")
used_time = 0
gen_img_cnt = 0
for i in range(local_num_steps):
if self.accelerator.is_main_process and i % 10 == 0:
print(f"Generation step {i}/{local_num_steps}")
# Get and pad labels for current batch
batch_start = i * batch_size
batch_end = batch_start + batch_size
labels = local_class_labels[batch_start:batch_end]
# Convert to tensors and track real vs padding
labels = torch.tensor(labels, device=self.device)
# Generate images
self.accelerator.wait_for_everyone()
start_time = time.time()
with torch.no_grad():
with self.accelerator.autocast():
slots = generate(unwraped_gpt_model, labels, self.num_slots_to_gen,
cfg_scale=self.cfg,
cfg_schedule=self.cfg_schedule,
temperature=self.temperature)
if self.num_slots_to_gen < self.num_slots:
null_slots = self.ae_model.dit.null_cond.expand(slots.shape[0], -1, -1)
null_slots = null_slots[:, self.num_slots_to_gen:, :]
slots = torch.cat([slots, null_slots], dim=1)
imgs = self.ae_model.sample(slots, targets=labels, cfg=self.ae_cfg)
samples_in_batch = min(batch_size * world_size, total_images - gen_img_cnt)
# Update timing stats
used_time += time.time() - start_time
gen_img_cnt += samples_in_batch
if self.accelerator.is_main_process and i % 10 == 0:
print(f"Avg generation time: {used_time/gen_img_cnt:.5f} sec/image")
gathered_imgs = concat_all_gather(imgs)
gathered_imgs = gathered_imgs[:samples_in_batch]
# Save images (only on main process)
if self.accelerator.is_main_process:
real_imgs = gathered_imgs.detach().cpu()
save_paths = [
os.path.join(save_folder, f"{str(idx).zfill(5)}.png")
for idx in range(gen_img_cnt - samples_in_batch, gen_img_cnt)
]
save_img_batch(real_imgs, save_paths)
# Calculate metrics (only on main process)
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process:
generated_files = len(os.listdir(save_folder))
print(f"Generated {generated_files} images out of {total_images} expected")
metrics_dict = get_fid_stats(save_folder, None, self.fid_stats)
fid = metrics_dict["frechet_inception_distance"]
inception_score = metrics_dict["inception_score_mean"]
metric_prefix = "fid_ema" if use_ema else "fid"
isc_prefix = "isc_ema" if use_ema else "isc"
self.accelerator.log({
metric_prefix: fid,
isc_prefix: inception_score,
"gpt_cfg": self.cfg,
"ae_cfg": self.ae_cfg,
"cfg_schedule": self.cfg_schedule,
"temperature": self.temperature,
"num_slots": self.test_num_slots if self.test_num_slots is not None else self.train_num_slots
}, step=self.steps)
# Print comprehensive CFG information
cfg_info = (
f"{'EMA ' if use_ema else ''}CFG params: "
f"gpt_cfg={self.cfg}, ae_cfg={self.ae_cfg}, "
f"cfg_schedule={self.cfg_schedule}, "
f"num_slots={self.test_num_slots if self.test_num_slots is not None else self.train_num_slots}, "
f"temperature={self.temperature}"
)
print(cfg_info)
print(f"FID: {fid:.2f}, ISC: {inception_score:.2f}")
# Cleanup
shutil.rmtree(save_folder)
# back to no ema
if use_ema:
if self.accelerator.is_main_process:
print("Switch back from ema")
model_without_ddp.load_state_dict(model_state_dict)
self.gpt_model.train()