Spaces:
Running
Running
import streamlit as st | |
from streamlit_js_eval import streamlit_js_eval | |
from azure.storage.blob import BlobServiceClient | |
from azure.cosmos import CosmosClient, exceptions | |
import json | |
import os | |
import uuid | |
import time | |
import calendar | |
connection_string = os.getenv("CONNECTION") | |
blob_service_client = BlobServiceClient.from_connection_string(connection_string) | |
def upload_blob(pdf_name, json_data, pdf_data_jobdescription,pdf_data_cvs): | |
try: | |
container_name = "jobdescriptions" | |
# json_blob_name = f"{pdf_name}_jsondata.json" | |
pdf_blob_name_jobdescription = f"{pdf_name}.pdf" | |
container_client = blob_service_client.get_container_client(container_name) | |
# json_blob_client = container_client.get_blob_client(json_blob_name) | |
# json_blob_client.upload_blob(json_data.encode('utf-8'), overwrite=True) | |
pdf_blob_client = container_client.get_blob_client(pdf_blob_name_jobdescription) | |
pdf_blob_client.upload_blob(pdf_data_jobdescription, overwrite=True) | |
upload_job_db_item(pdf_name,len(pdf_data_cvs),json.loads(json_data)) | |
links = [] | |
names = [] | |
for i,cv in enumerate(pdf_data_cvs): | |
cv_nr_for_id = i+1 | |
cv_session_state_string = "cv-"+str(cv_nr_for_id) | |
session_state_name = st.session_state[cv_session_state_string] | |
names.append(session_state_name) | |
cv_id = pdf_name + "-cv-nr-" + str(cv_nr_for_id)+str(calendar.timegm(time.gmtime())) | |
upload_db_item(session_state_name, json.loads(json_data), pdf_name, cv_id) | |
pdf_blob_name_cv = f"{cv_id}.pdf" | |
pdf_blob_client = container_client.get_blob_client(pdf_blob_name_cv) | |
pdf_blob_client.upload_blob(pdf_data_cvs[i], overwrite=True) | |
links.append("https://tensora.ai/workgenius/cv-evaluation2/?job="+cv_id) | |
st.success('Data and PDF files have been successfully uploaded. The link to the chatbot for the potential candidate is the following: ') | |
for i,link in enumerate(links): | |
st.write("Link for the candidate "+names[i]+": ") | |
st.write(link) | |
return True | |
except Exception as e: | |
print(f"Fehler beim Hochladen der Daten: {str(e)}") | |
return False | |
def upload_job_db_item(id, number_of_applicants, data): | |
endpoint = "https://wg-candidate-data.documents.azure.com:443/" | |
key = os.getenv("CONNECTION_DB") | |
client = CosmosClient(endpoint, key) | |
database = client.get_database_client("ToDoList") | |
container = database.get_container_client("JobData") | |
job_item = { | |
"id": id, | |
'partitionKey' : 'wg-job-data-v1', | |
"title": data["title"], | |
"number_of_applicants": number_of_applicants, | |
"every_interview_conducted": False, | |
"evaluation_email": data["email"], | |
"question_one": data["question_one"], | |
"question_two": data["question_two"], | |
"question_three": data["question_three"], | |
} | |
try: | |
# Fügen Sie das Element in den Container ein | |
container.create_item(body=job_item) | |
print("Eintrag erfolgreich in die Cosmos DB eingefügt. Container: Job Data") | |
except exceptions.CosmosHttpResponseError as e: | |
print(f"Fehler beim Schreiben in die Cosmos DB: {str(e)}") | |
except Exception as e: | |
print(f"Allgemeiner Fehler: {str(e)}") | |
def upload_db_item(name, data, job_description_id, cv_id): | |
endpoint = "https://wg-candidate-data.documents.azure.com:443/" | |
key = os.getenv("CONNECTION_DB") | |
client = CosmosClient(endpoint, key) | |
database = client.get_database_client("ToDoList") | |
container = database.get_container_client("Items") | |
candidate_item = { | |
"id": cv_id, | |
'partitionKey' : 'wg-candidate-data-v1', | |
"name": name, | |
"title": data["title"], | |
"interview_conducted": False, | |
"ai_summary": "", | |
"evaluation_email": data["email"], | |
"question_one": data["question_one"], | |
"question_two": data["question_two"], | |
"question_three": data["question_three"], | |
"job_description_id": job_description_id, | |
} | |
try: | |
# Fügen Sie das Element in den Container ein | |
container.create_item(body=candidate_item) | |
print("Eintrag erfolgreich in die Cosmos DB eingefügt. Container: Items(candidate Data)") | |
except exceptions.CosmosHttpResponseError as e: | |
print(f"Fehler beim Schreiben in die Cosmos DB: {str(e)}") | |
except Exception as e: | |
print(f"Allgemeiner Fehler: {str(e)}") | |
# def clear_states(): | |
# if len(st.session_state.title) > 0 and len(st.session_state.mail) > 0 and st.session_state.job and len(st.session_state.cvs)>0: | |
# st.session_state.title = "" | |
# st.session_state.mail = "" | |
# # st.session_state.job = None | |
# st.session_state.cvs = [] | |
st.markdown( | |
""" | |
<style> | |
[data-testid=column]{ | |
text-align: center; | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
col1, col2 = st.columns([2, 1]) | |
col1.title("Job description upload") | |
col2.image("https://www.workgenius.com/wp-content/uploads/2023/03/WorkGenius_navy-1.svg") | |
st.write("Please upload the job description and resume(s) as PDF and enter the job title for the position. To receive the evaluation of the potential candidate(s), please provide your email address.") | |
upload_success = True | |
with st.container(): | |
uploaded_file_jobdescription = st.file_uploader("Upload the job description:", type=["pdf"], key="job") | |
job_title = st.text_input("Enter the job title:", key="title") | |
email = st.text_input("Enter the email:" , key="mail") | |
uploaded_file_cvs = st.file_uploader("Upload the resume(s):", type=["pdf"],accept_multiple_files=True, key="cvs") | |
for i,cv in enumerate(st.session_state["cvs"]): | |
st.text_input(label="Enter the name of the "+str(i+1)+". CV (File: "+cv.name+")", value=cv.name,key="cv-"+str(i+1)) | |
with st.expander("Enter up to three predefined questions if needed. Otherwise leave it blank:"): | |
question_one = st.text_input("Enter the first question:") | |
question_two = st.text_input("Enter the second question:") | |
question_three = st.text_input("Enter the third question:") | |
col_submit_btn, col_empty, col_clear_btn = st.columns([1,4, 1]) | |
if col_clear_btn.button("Clear " ,use_container_width=True): | |
streamlit_js_eval(js_expressions="parent.window.location.reload()") | |
if col_submit_btn.button("Submit", use_container_width=True): | |
if len(job_title) > 0 and len(email) > 0 and uploaded_file_jobdescription and len(uploaded_file_cvs)>0: | |
data = { | |
"title": job_title, | |
"email": email, | |
"question_one": "", | |
"question_two": "", | |
"question_three": "", | |
} | |
if question_one: | |
data["question_one"] = question_one | |
if question_two: | |
data["question_two"] = question_two | |
if question_three: | |
data["question_three"] = question_three | |
json_data = json.dumps(data, ensure_ascii=False) | |
# Eine zufällige UUID generieren | |
random_uuid = uuid.uuid4() | |
# Die UUID als String darstellen | |
uuid_string = str(random_uuid) | |
pdf_name = uuid_string | |
pdf_data_jobdescription = uploaded_file_jobdescription.read() | |
pdf_data_cvs = [] | |
for i,cv in enumerate(st.session_state["cvs"]): | |
print(cv.name) | |
pdf_data_cvs.append(cv.read()) | |
# pdf_data_cv = uploaded_file_cv.read() | |
upload_success = upload_blob(pdf_name, json_data, pdf_data_jobdescription,pdf_data_cvs) | |
else: | |
st.write("Please fill out both fields and upload a PDF file.") | |
if not upload_success: | |
st.error('An error has occurred. Please contact the administrator. Sorry for the inconvenience.', icon="🚨") | |
# else: | |
# col_submit_btn, col_empty, col_clear_btn = st.columns([1,4, 1]) | |
# if col_clear_btn.button("Clear" ,use_container_width=True): | |
# streamlit_js_eval(js_expressions="parent.window.location.reload()") |