Spaces:
Sleeping
Sleeping
Update to allow pre generated questions
Browse files
app.py
CHANGED
@@ -2,17 +2,21 @@ import streamlit as st
|
|
2 |
from streamlit_js_eval import streamlit_js_eval
|
3 |
from azure.storage.blob import BlobServiceClient
|
4 |
from azure.cosmos import CosmosClient, exceptions
|
|
|
|
|
|
|
5 |
import json
|
6 |
import os
|
7 |
import uuid
|
8 |
import time
|
9 |
import calendar
|
|
|
10 |
|
11 |
connection_string = os.getenv("CONNECTION")
|
12 |
blob_service_client = BlobServiceClient.from_connection_string(connection_string)
|
13 |
|
14 |
|
15 |
-
def upload_blob(pdf_name, json_data, pdf_data_jobdescription,pdf_data_cvs):
|
16 |
try:
|
17 |
container_name = "jobdescriptions"
|
18 |
# json_blob_name = f"{pdf_name}_jsondata.json"
|
@@ -26,7 +30,7 @@ def upload_blob(pdf_name, json_data, pdf_data_jobdescription,pdf_data_cvs):
|
|
26 |
pdf_blob_client = container_client.get_blob_client(pdf_blob_name_jobdescription)
|
27 |
pdf_blob_client.upload_blob(pdf_data_jobdescription, overwrite=True)
|
28 |
|
29 |
-
upload_job_db_item(pdf_name,len(pdf_data_cvs),json.loads(json_data))
|
30 |
|
31 |
links = []
|
32 |
names = []
|
@@ -53,7 +57,7 @@ def upload_blob(pdf_name, json_data, pdf_data_jobdescription,pdf_data_cvs):
|
|
53 |
print(f"Fehler beim Hochladen der Daten: {str(e)}")
|
54 |
return False
|
55 |
|
56 |
-
def upload_job_db_item(id, number_of_applicants, data):
|
57 |
endpoint = "https://wg-candidate-data.documents.azure.com:443/"
|
58 |
key = os.getenv("CONNECTION_DB")
|
59 |
client = CosmosClient(endpoint, key)
|
@@ -69,6 +73,8 @@ def upload_job_db_item(id, number_of_applicants, data):
|
|
69 |
"question_one": data["question_one"],
|
70 |
"question_two": data["question_two"],
|
71 |
"question_three": data["question_three"],
|
|
|
|
|
72 |
}
|
73 |
try:
|
74 |
# Fügen Sie das Element in den Container ein
|
@@ -109,13 +115,6 @@ def upload_db_item(name, data, job_description_id, cv_id):
|
|
109 |
except Exception as e:
|
110 |
print(f"Allgemeiner Fehler: {str(e)}")
|
111 |
|
112 |
-
# def clear_states():
|
113 |
-
# if len(st.session_state.title) > 0 and len(st.session_state.mail) > 0 and st.session_state.job and len(st.session_state.cvs)>0:
|
114 |
-
# st.session_state.title = ""
|
115 |
-
# st.session_state.mail = ""
|
116 |
-
# # st.session_state.job = None
|
117 |
-
# st.session_state.cvs = []
|
118 |
-
|
119 |
st.markdown(
|
120 |
"""
|
121 |
<style>
|
@@ -131,26 +130,122 @@ st.markdown(
|
|
131 |
)
|
132 |
col1, col2 = st.columns([2, 1])
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
col1.title("Job description upload")
|
136 |
col2.image("https://www.workgenius.com/wp-content/uploads/2023/03/WorkGenius_navy-1.svg")
|
137 |
|
138 |
st.write("Please upload the job description and resume(s) as PDF and enter the job title for the position. To receive the evaluation of the potential candidate(s), please provide your email address.")
|
139 |
upload_success = True
|
|
|
|
|
140 |
with st.container():
|
|
|
|
|
141 |
uploaded_file_jobdescription = st.file_uploader("Upload the job description:", type=["pdf"], key="job")
|
142 |
job_title = st.text_input("Enter the job title:", key="title")
|
143 |
email = st.text_input("Enter the email:" , key="mail")
|
144 |
uploaded_file_cvs = st.file_uploader("Upload the resume(s):", type=["pdf"],accept_multiple_files=True, key="cvs")
|
145 |
for i,cv in enumerate(st.session_state["cvs"]):
|
146 |
st.text_input(label="Enter the name of the "+str(i+1)+". CV (File: "+cv.name+")", value=cv.name,key="cv-"+str(i+1))
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
col_submit_btn, col_empty, col_clear_btn = st.columns([1,4, 1])
|
152 |
if col_clear_btn.button("Clear " ,use_container_width=True):
|
153 |
streamlit_js_eval(js_expressions="parent.window.location.reload()")
|
|
|
|
|
154 |
if col_submit_btn.button("Submit", use_container_width=True):
|
155 |
if len(job_title) > 0 and len(email) > 0 and uploaded_file_jobdescription and len(uploaded_file_cvs)>0:
|
156 |
data = {
|
@@ -160,12 +255,13 @@ with st.container():
|
|
160 |
"question_two": "",
|
161 |
"question_three": "",
|
162 |
}
|
163 |
-
if
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
169 |
|
170 |
json_data = json.dumps(data, ensure_ascii=False)
|
171 |
|
@@ -177,14 +273,11 @@ with st.container():
|
|
177 |
|
178 |
pdf_name = uuid_string
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
for i,cv in enumerate(st.session_state["cvs"]):
|
183 |
-
print(cv.name)
|
184 |
-
pdf_data_cvs.append(cv.read())
|
185 |
# pdf_data_cv = uploaded_file_cv.read()
|
186 |
|
187 |
-
upload_success = upload_blob(pdf_name, json_data, pdf_data_jobdescription,pdf_data_cvs)
|
188 |
else:
|
189 |
st.write("Please fill out both fields and upload a PDF file.")
|
190 |
|
|
|
2 |
from streamlit_js_eval import streamlit_js_eval
|
3 |
from azure.storage.blob import BlobServiceClient
|
4 |
from azure.cosmos import CosmosClient, exceptions
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
+
import io
|
7 |
+
import openai
|
8 |
import json
|
9 |
import os
|
10 |
import uuid
|
11 |
import time
|
12 |
import calendar
|
13 |
+
import re
|
14 |
|
15 |
connection_string = os.getenv("CONNECTION")
|
16 |
blob_service_client = BlobServiceClient.from_connection_string(connection_string)
|
17 |
|
18 |
|
19 |
+
def upload_blob(pdf_name, json_data, pdf_data_jobdescription,pdf_data_cvs, pre_generated_bool, custom_questions):
|
20 |
try:
|
21 |
container_name = "jobdescriptions"
|
22 |
# json_blob_name = f"{pdf_name}_jsondata.json"
|
|
|
30 |
pdf_blob_client = container_client.get_blob_client(pdf_blob_name_jobdescription)
|
31 |
pdf_blob_client.upload_blob(pdf_data_jobdescription, overwrite=True)
|
32 |
|
33 |
+
upload_job_db_item(pdf_name,len(pdf_data_cvs),json.loads(json_data),pre_generated_bool, custom_questions)
|
34 |
|
35 |
links = []
|
36 |
names = []
|
|
|
57 |
print(f"Fehler beim Hochladen der Daten: {str(e)}")
|
58 |
return False
|
59 |
|
60 |
+
def upload_job_db_item(id, number_of_applicants, data, pre_generated_bool, custom_questions):
|
61 |
endpoint = "https://wg-candidate-data.documents.azure.com:443/"
|
62 |
key = os.getenv("CONNECTION_DB")
|
63 |
client = CosmosClient(endpoint, key)
|
|
|
73 |
"question_one": data["question_one"],
|
74 |
"question_two": data["question_two"],
|
75 |
"question_three": data["question_three"],
|
76 |
+
"pre_generated": pre_generated_bool,
|
77 |
+
"custom_questions": custom_questions
|
78 |
}
|
79 |
try:
|
80 |
# Fügen Sie das Element in den Container ein
|
|
|
115 |
except Exception as e:
|
116 |
print(f"Allgemeiner Fehler: {str(e)}")
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
st.markdown(
|
119 |
"""
|
120 |
<style>
|
|
|
130 |
)
|
131 |
col1, col2 = st.columns([2, 1])
|
132 |
|
133 |
+
if "ai_questions" not in st.session_state:
|
134 |
+
st.session_state["ai_questions"] = None
|
135 |
+
if "pdf_data_cvs" not in st.session_state:
|
136 |
+
st.session_state["pdf_data_cvs"] = None
|
137 |
+
if "pdf_data_cvs_string" not in st.session_state:
|
138 |
+
st.session_state["pdf_data_cvs_string"] = None
|
139 |
+
if "pdf_data_jobdescription" not in st.session_state:
|
140 |
+
st.session_state["pdf_data_jobdescription"] = None
|
141 |
+
if "pdf_data_jobdescription_string" not in st.session_state:
|
142 |
+
st.session_state["pdf_data_jobdescription_string"] = None
|
143 |
+
if "final_question_string" not in st.session_state:
|
144 |
+
st.session_state["final_question_string"] = []
|
145 |
+
|
146 |
+
with open("sys_prompt_frontend.txt") as f:
|
147 |
+
sys_prompt = f.read()
|
148 |
|
149 |
col1.title("Job description upload")
|
150 |
col2.image("https://www.workgenius.com/wp-content/uploads/2023/03/WorkGenius_navy-1.svg")
|
151 |
|
152 |
st.write("Please upload the job description and resume(s) as PDF and enter the job title for the position. To receive the evaluation of the potential candidate(s), please provide your email address.")
|
153 |
upload_success = True
|
154 |
+
|
155 |
+
#This container represents the form
|
156 |
with st.container():
|
157 |
+
|
158 |
+
#Form section for the files, names, title and mail
|
159 |
uploaded_file_jobdescription = st.file_uploader("Upload the job description:", type=["pdf"], key="job")
|
160 |
job_title = st.text_input("Enter the job title:", key="title")
|
161 |
email = st.text_input("Enter the email:" , key="mail")
|
162 |
uploaded_file_cvs = st.file_uploader("Upload the resume(s):", type=["pdf"],accept_multiple_files=True, key="cvs")
|
163 |
for i,cv in enumerate(st.session_state["cvs"]):
|
164 |
st.text_input(label="Enter the name of the "+str(i+1)+". CV (File: "+cv.name+")", value=cv.name,key="cv-"+str(i+1))
|
165 |
+
|
166 |
+
#Form section for the interview mode (pre generated or not) and additional questions
|
167 |
+
if len(job_title) > 0 and len(email) > 0 and uploaded_file_jobdescription and len(uploaded_file_cvs)>0:
|
168 |
+
st.write("Activate the toggle to generate and select the questions in advance. Otherwise the questions will be generated automatically during the interview.")
|
169 |
+
if not st.session_state["pdf_data_cvs"] and not st.session_state["pdf_data_cvs_string"] and not st.session_state["pdf_data_jobdescription"] and not st.session_state["pdf_data_jobdescription_string"]:
|
170 |
+
pdf_data_jobdescription = uploaded_file_jobdescription.read()
|
171 |
+
pdf_data_jobdescription_string = ""
|
172 |
+
pdf_reader_job = PdfReader(io.BytesIO(pdf_data_jobdescription))
|
173 |
+
for page_num in range(len(pdf_reader_job.pages)):
|
174 |
+
page = pdf_reader_job.pages[page_num]
|
175 |
+
pdf_data_jobdescription_string += page.extract_text()
|
176 |
+
pdf_data_cvs = []
|
177 |
+
pdf_data_cvs_string = ""
|
178 |
+
for i,cv in enumerate(st.session_state["cvs"]):
|
179 |
+
print(cv.name)
|
180 |
+
# print(cv.name)
|
181 |
+
# print(cv.size)
|
182 |
+
cv_data_bytes = cv.read()
|
183 |
+
# print(len(cv_data_bytes))
|
184 |
+
pdf_data_cvs.append(cv_data_bytes)
|
185 |
+
pdf_reader_cvs = PdfReader(io.BytesIO(cv_data_bytes))
|
186 |
+
pdf_data_cvs_string += "CV "+str(i+1)+": "
|
187 |
+
for page_num in range(len(pdf_reader_cvs.pages)):
|
188 |
+
page = pdf_reader_cvs.pages[page_num]
|
189 |
+
pdf_data_cvs_string += page.extract_text()
|
190 |
+
pdf_data_cvs_string += "\n"
|
191 |
+
st.session_state["pdf_data_cvs"] = pdf_data_cvs
|
192 |
+
st.session_state["pdf_data_cvs_string"] = pdf_data_cvs_string
|
193 |
+
st.session_state["pdf_data_jobdescription"] = pdf_data_jobdescription
|
194 |
+
st.session_state["pdf_data_jobdescription_string"] = pdf_data_jobdescription_string
|
195 |
+
pre_generate = st.toggle("Activate to pre generate questions", key="pre_toggle")
|
196 |
+
if pre_generate:
|
197 |
+
system = sys_prompt.format(job=st.session_state["pdf_data_jobdescription_string"], resume=st.session_state["pdf_data_cvs_string"], n=15)
|
198 |
+
if not st.session_state["ai_questions"]:
|
199 |
+
try:
|
200 |
+
st.write("The questions are generated. This may take a short moment...")
|
201 |
+
res = openai.ChatCompletion.create(
|
202 |
+
model="gpt-4",
|
203 |
+
temperature=0.2,
|
204 |
+
messages=[
|
205 |
+
{
|
206 |
+
"role": "system",
|
207 |
+
"content": system,
|
208 |
+
},
|
209 |
+
],
|
210 |
+
)
|
211 |
+
st.session_state["ai_questions"] = res.choices[0]["message"]["content"].split("\n")
|
212 |
+
for i,q in enumerate(res.choices[0]["message"]["content"].split("\n")):
|
213 |
+
st.session_state["disable_row_"+str(i)] = False
|
214 |
+
st.rerun()
|
215 |
+
except Exception as e:
|
216 |
+
print(f"Fehler beim generieren der Fragen: {str(e)}")
|
217 |
+
st.error("An error has occurred. Please reload the page or contact the admin.", icon="🚨")
|
218 |
+
else:
|
219 |
+
for i,question in enumerate(st.session_state["ai_questions"]):
|
220 |
+
cols = st.columns([5,1])
|
221 |
+
with cols[1]:
|
222 |
+
if st.button("Accept",use_container_width=True,key="btn_accept_row_"+str(i)):
|
223 |
+
print("accept")
|
224 |
+
pattern = re.compile(r"^[1-9][0-9]?\.")
|
225 |
+
questions_length = len(st.session_state["final_question_string"])
|
226 |
+
question_from_text_area = st.session_state["text_area_"+str(i)]
|
227 |
+
question_to_append = str(questions_length+1)+"."+re.sub(pattern, "", question_from_text_area)
|
228 |
+
st.session_state["final_question_string"].append(question_to_append)
|
229 |
+
st.session_state["disable_row_"+str(i)] = True
|
230 |
+
st.rerun()
|
231 |
+
if st.button("Delete",use_container_width=True,key="btn_del_row_"+str(i)):
|
232 |
+
print("delete")
|
233 |
+
st.session_state["ai_questions"].remove(question)
|
234 |
+
st.rerun()
|
235 |
+
with cols[0]:
|
236 |
+
st.text_area(label="Question "+str(i+1)+":",value=question,label_visibility="collapsed",key="text_area_"+str(i),disabled=st.session_state["disable_row_"+str(i)])
|
237 |
+
else:
|
238 |
+
with st.expander("Enter up to three predefined questions if needed. Otherwise leave it blank:"):
|
239 |
+
question_one = st.text_input("Enter the first question:")
|
240 |
+
question_two = st.text_input("Enter the second question:")
|
241 |
+
question_three = st.text_input("Enter the third question:")
|
242 |
+
|
243 |
+
#Form section for Submit and Clear
|
244 |
col_submit_btn, col_empty, col_clear_btn = st.columns([1,4, 1])
|
245 |
if col_clear_btn.button("Clear " ,use_container_width=True):
|
246 |
streamlit_js_eval(js_expressions="parent.window.location.reload()")
|
247 |
+
|
248 |
+
#Code to handle the input
|
249 |
if col_submit_btn.button("Submit", use_container_width=True):
|
250 |
if len(job_title) > 0 and len(email) > 0 and uploaded_file_jobdescription and len(uploaded_file_cvs)>0:
|
251 |
data = {
|
|
|
255 |
"question_two": "",
|
256 |
"question_three": "",
|
257 |
}
|
258 |
+
if not st.session_state["pre_toggle"]:
|
259 |
+
if question_one:
|
260 |
+
data["question_one"] = question_one
|
261 |
+
if question_two:
|
262 |
+
data["question_two"] = question_two
|
263 |
+
if question_three:
|
264 |
+
data["question_three"] = question_three
|
265 |
|
266 |
json_data = json.dumps(data, ensure_ascii=False)
|
267 |
|
|
|
273 |
|
274 |
pdf_name = uuid_string
|
275 |
|
276 |
+
print(st.session_state["final_question_string"])
|
277 |
+
|
|
|
|
|
|
|
278 |
# pdf_data_cv = uploaded_file_cv.read()
|
279 |
|
280 |
+
upload_success = upload_blob(pdf_name, json_data, st.session_state["pdf_data_jobdescription"],st.session_state["pdf_data_cvs"],st.session_state["pre_toggle"],st.session_state["final_question_string"])
|
281 |
else:
|
282 |
st.write("Please fill out both fields and upload a PDF file.")
|
283 |
|