mo-docs / app.py
Paul-Louis Pröve
user and pw in secrets
0169b98
raw
history blame
4.96 kB
import os
import time
import openai
import gradio as gr
import polars as pl
from sentence_transformers import SentenceTransformer
from langchain.vectorstores.azuresearch import AzureSearch
# from langchain.chat_models import AzureChatOpenAI
# from langchain.schema import SystemMessage, HumanMessage
from dotenv import load_dotenv
load_dotenv()
openai.api_type = "azure"
openai.api_version = "2023-03-15-preview"
openai.api_key = os.getenv("OPENAI_API_KEY")
openai.api_base = os.getenv("OPENAI_API_BASE")
vector_store_address = os.getenv("VECTOR_STORE_URL")
vector_store_password = os.getenv("VECTOR_STORE_KEY")
index_name = "motor-gm-search"
df = pl.read_csv("year-make-model.csv")
years = df["year"].unique().to_list()
makes = df["make"].unique().to_list()
models = df["model"].unique().to_list()
with open("sys_prompt.txt", "r") as f:
sys_prompt = f.read()
with open("translate_prompt.txt", "r") as f:
translate_prompt = f.read()
# llm = AzureChatOpenAI(deployment_name="chatserver35turbo")
embedder = SentenceTransformer("BAAI/bge-small-en")
vector_store = AzureSearch(
azure_search_endpoint=vector_store_address,
azure_search_key=vector_store_password,
index_name=index_name,
embedding_function=lambda x: embedder.encode([x])[0],
)
def filter_makes(year):
df1 = df.filter(pl.col("year") == int(year))
choices = sorted(df1["make"].unique().to_list())
return gr.Dropdown.update(choices=choices, interactive=True)
def filter_models(year, make):
df1 = df.filter(pl.col("year") == int(year))
df1 = df1.filter(pl.col("make") == make)
choices = sorted(df1["model"].unique().to_list())
return gr.Dropdown.update(choices=choices, interactive=True)
def gpt(history, prompt, temp=0.0, stream=True):
hist = [{"role": "system", "content": prompt}]
for user, bot in history:
hist += [{"role": "user", "content": user}]
if bot:
hist += [{"role": "assistant", "content": bot}]
return openai.ChatCompletion.create(
deployment_id="chatserver35turbo16k",
messages=hist,
temperature=temp,
stream=stream,
)
def user(message, history):
# Necessary to clear input and display message
return "", history + [[message, None]]
def search(history, results, year, make, model):
if results:
# If results already exist, don't search again
return history, results
query = gpt(history, translate_prompt, stream=False)["choices"][0]["message"][
"content"
]
print(query)
filters = f"year eq {year} and make eq '{make}' and model eq '{model}'"
res = vector_store.similarity_search(
query, 5, search_type="hybrid", filters=filters
)
results = []
for r in res:
results.append(
{
"title": r.metadata["title"],
"content": r.page_content,
}
)
return history, results
def bot(history, results):
res = gpt(history, sys_prompt + str(results))
history[-1][1] = ""
for chunk in res:
if "content" in chunk["choices"][0]["delta"]:
history[-1][1] = history[-1][1] + chunk["choices"][0]["delta"]["content"]
yield history
with gr.Blocks(
css="footer {visibility: hidden} #docs {height: 600px; overflow: auto !important}"
) as app:
with gr.Row():
year = gr.Dropdown(years, label="Year")
make = gr.Dropdown([], label="Make", interactive=False)
model = gr.Dropdown([], label="Model", interactive=False)
year.change(filter_makes, year, make)
make.change(filter_models, [year, make], model)
with gr.Row():
with gr.Column(scale=0.3333):
results = []
text = gr.JSON(None, language="json", interactive=False, elem_id="docs")
with gr.Column(scale=0.6667):
chatbot = gr.Chatbot(height=462)
with gr.Row():
msg = gr.Textbox(show_label=False, scale=7)
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
search,
[chatbot, text, year, make, model],
[chatbot, text],
queue=False,
).then(bot, [chatbot, text], chatbot)
btn = gr.Button("Send", variant="primary")
btn.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
search,
[chatbot, text, year, make, model],
[chatbot, text],
queue=False,
).then(bot, [chatbot, text], chatbot)
with gr.Row():
gr.Button("Clear").click(
lambda x, y: ([], None), [chatbot, text], [chatbot, text]
)
gr.Button("Undo").click(lambda x: (x[:-1]), [chatbot], [chatbot])
app.queue().launch(auth=(os.getenv("USER"), os.getenv("PASSWORD")))
# app.queue().launch()