import os import time import openai import gradio as gr import polars as pl from sentence_transformers import SentenceTransformer from langchain.vectorstores.azuresearch import AzureSearch # from langchain.chat_models import AzureChatOpenAI # from langchain.schema import SystemMessage, HumanMessage from dotenv import load_dotenv load_dotenv() openai.api_type = "azure" openai.api_version = "2023-03-15-preview" openai.api_key = os.getenv("OPENAI_API_KEY") openai.api_base = os.getenv("OPENAI_API_BASE") vector_store_address = os.getenv("VECTOR_STORE_URL") vector_store_password = os.getenv("VECTOR_STORE_KEY") index_name = "motor-gm-search" df = pl.read_csv("year-make-model.csv") years = df["year"].unique().to_list() makes = df["make"].unique().to_list() models = df["model"].unique().to_list() with open("sys_prompt.txt", "r") as f: sys_prompt = f.read() with open("translate_prompt.txt", "r") as f: translate_prompt = f.read() # llm = AzureChatOpenAI(deployment_name="chatserver35turbo") embedder = SentenceTransformer("BAAI/bge-small-en") vector_store = AzureSearch( azure_search_endpoint=vector_store_address, azure_search_key=vector_store_password, index_name=index_name, embedding_function=lambda x: embedder.encode([x])[0], ) def filter_makes(year): df1 = df.filter(pl.col("year") == int(year)) choices = sorted(df1["make"].unique().to_list()) return gr.Dropdown.update(choices=choices, interactive=True) def filter_models(year, make): df1 = df.filter(pl.col("year") == int(year)) df1 = df1.filter(pl.col("make") == make) choices = sorted(df1["model"].unique().to_list()) return gr.Dropdown.update(choices=choices, interactive=True) def gpt(history, prompt, temp=0.0, stream=True): hist = [{"role": "system", "content": prompt}] for user, bot in history: hist += [{"role": "user", "content": user}] if bot: hist += [{"role": "assistant", "content": bot}] return openai.ChatCompletion.create( deployment_id="chatserver35turbo16k", messages=hist, temperature=temp, stream=stream, ) def user(message, history): # Necessary to clear input and display message return "", history + [[message, None]] def search(history, results, year, make, model): if results: # If results already exist, don't search again return history, results query = gpt(history, translate_prompt, stream=False)["choices"][0]["message"][ "content" ] print(query) filters = f"year eq {year} and make eq '{make}' and model eq '{model}'" res = vector_store.similarity_search( query, 5, search_type="hybrid", filters=filters ) results = [] for r in res: results.append( { "title": r.metadata["title"], "content": r.page_content, } ) return history, results def bot(history, results): res = gpt(history, sys_prompt + str(results)) history[-1][1] = "" for chunk in res: if "content" in chunk["choices"][0]["delta"]: history[-1][1] = history[-1][1] + chunk["choices"][0]["delta"]["content"] yield history with gr.Blocks( css="footer {visibility: hidden} #docs {height: 600px; overflow: auto !important}" ) as app: with gr.Row(): year = gr.Dropdown(years, label="Year") make = gr.Dropdown([], label="Make", interactive=False) model = gr.Dropdown([], label="Model", interactive=False) year.change(filter_makes, year, make) make.change(filter_models, [year, make], model) with gr.Row(): with gr.Column(scale=0.3333): results = [] text = gr.JSON(None, language="json", interactive=False, elem_id="docs") with gr.Column(scale=0.6667): chatbot = gr.Chatbot(height=462) with gr.Row(): msg = gr.Textbox(show_label=False, scale=7) msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( search, [chatbot, text, year, make, model], [chatbot, text], queue=False, ).then(bot, [chatbot, text], chatbot) btn = gr.Button("Send", variant="primary") btn.click(user, [msg, chatbot], [msg, chatbot], queue=False).then( search, [chatbot, text, year, make, model], [chatbot, text], queue=False, ).then(bot, [chatbot, text], chatbot) with gr.Row(): gr.Button("Clear").click( lambda x, y: ([], None), [chatbot, text], [chatbot, text] ) gr.Button("Undo").click(lambda x: (x[:-1]), [chatbot], [chatbot]) app.queue().launch(auth=(os.getenv("USER"), os.getenv("PASSWORD"))) # app.queue().launch()