Spaces:
Sleeping
Sleeping
Upload 8 files
Browse files- pytrends/__init__.py +0 -0
- pytrends/__pycache__/__init__.cpython-310.pyc +0 -0
- pytrends/__pycache__/dailydata.cpython-310.pyc +0 -0
- pytrends/__pycache__/exceptions.cpython-310.pyc +0 -0
- pytrends/__pycache__/request.cpython-310.pyc +0 -0
- pytrends/dailydata.py +127 -0
- pytrends/exceptions.py +17 -0
- pytrends/request.py +609 -0
pytrends/__init__.py
ADDED
|
File without changes
|
pytrends/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (186 Bytes). View file
|
|
|
pytrends/__pycache__/dailydata.cpython-310.pyc
ADDED
|
Binary file (4.73 kB). View file
|
|
|
pytrends/__pycache__/exceptions.cpython-310.pyc
ADDED
|
Binary file (1.11 kB). View file
|
|
|
pytrends/__pycache__/request.cpython-310.pyc
ADDED
|
Binary file (15.6 kB). View file
|
|
|
pytrends/dailydata.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datetime import date, timedelta
|
| 2 |
+
from functools import partial
|
| 3 |
+
from time import sleep
|
| 4 |
+
from calendar import monthrange
|
| 5 |
+
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
from pytrends.exceptions import ResponseError
|
| 9 |
+
from pytrends.request import TrendReq
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def get_last_date_of_month(year: int, month: int) -> date:
|
| 13 |
+
"""Given a year and a month returns an instance of the date class
|
| 14 |
+
containing the last day of the corresponding month.
|
| 15 |
+
|
| 16 |
+
Source: https://stackoverflow.com/questions/42950/get-last-day-of-the-month-in-python
|
| 17 |
+
"""
|
| 18 |
+
return date(year, month, monthrange(year, month)[1])
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def convert_dates_to_timeframe(start: date, stop: date) -> str:
|
| 22 |
+
"""Given two dates, returns a stringified version of the interval between
|
| 23 |
+
the two dates which is used to retrieve data for a specific time frame
|
| 24 |
+
from Google Trends.
|
| 25 |
+
"""
|
| 26 |
+
return f"{start.strftime('%Y-%m-%d')} {stop.strftime('%Y-%m-%d')}"
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def _fetch_data(pytrends, build_payload, timeframe: str) -> pd.DataFrame:
|
| 30 |
+
"""Attempts to fecth data and retries in case of a ResponseError."""
|
| 31 |
+
attempts, fetched = 0, False
|
| 32 |
+
while not fetched:
|
| 33 |
+
try:
|
| 34 |
+
build_payload(timeframe=timeframe)
|
| 35 |
+
except ResponseError as err:
|
| 36 |
+
print(err)
|
| 37 |
+
print(f'Trying again in {60 + 5 * attempts} seconds.')
|
| 38 |
+
sleep(60 + 5 * attempts)
|
| 39 |
+
attempts += 1
|
| 40 |
+
if attempts > 3:
|
| 41 |
+
print('Failed after 3 attemps, abort fetching.')
|
| 42 |
+
break
|
| 43 |
+
else:
|
| 44 |
+
fetched = True
|
| 45 |
+
return pytrends.interest_over_time()
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def get_daily_data(word: str,
|
| 49 |
+
start_year: int,
|
| 50 |
+
start_mon: int,
|
| 51 |
+
stop_year: int,
|
| 52 |
+
stop_mon: int,
|
| 53 |
+
geo: str = 'US',
|
| 54 |
+
verbose: bool = True,
|
| 55 |
+
wait_time: float = 5.0) -> pd.DataFrame:
|
| 56 |
+
"""Given a word, fetches daily search volume data from Google Trends and
|
| 57 |
+
returns results in a pandas DataFrame.
|
| 58 |
+
|
| 59 |
+
Details: Due to the way Google Trends scales and returns data, special
|
| 60 |
+
care needs to be taken to make the daily data comparable over different
|
| 61 |
+
months. To do that, we download daily data on a month by month basis,
|
| 62 |
+
and also monthly data. The monthly data is downloaded in one go, so that
|
| 63 |
+
the monthly values are comparable amongst themselves and can be used to
|
| 64 |
+
scale the daily data. The daily data is scaled by multiplying the daily
|
| 65 |
+
value by the monthly search volume divided by 100.
|
| 66 |
+
For a more detailed explanation see http://bit.ly/trendsscaling
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
word (str): Word to fetch daily data for.
|
| 70 |
+
start_year (int): the start year
|
| 71 |
+
start_mon (int): start 1st day of the month
|
| 72 |
+
stop_year (int): the end year
|
| 73 |
+
stop_mon (int): end at the last day of the month
|
| 74 |
+
geo (str): geolocation
|
| 75 |
+
verbose (bool): If True, then prints the word and current time frame
|
| 76 |
+
we are fecthing the data for.
|
| 77 |
+
|
| 78 |
+
Returns:
|
| 79 |
+
complete (pd.DataFrame): Contains 4 columns.
|
| 80 |
+
The column named after the word argument contains the daily search
|
| 81 |
+
volume already scaled and comparable through time.
|
| 82 |
+
The column f'{word}_unscaled' is the original daily data fetched
|
| 83 |
+
month by month, and it is not comparable across different months
|
| 84 |
+
(but is comparable within a month).
|
| 85 |
+
The column f'{word}_monthly' contains the original monthly data
|
| 86 |
+
fetched at once. The values in this column have been backfilled
|
| 87 |
+
so that there are no NaN present.
|
| 88 |
+
The column 'scale' contains the scale used to obtain the scaled
|
| 89 |
+
daily data.
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
# Set up start and stop dates
|
| 93 |
+
start_date = date(start_year, start_mon, 1)
|
| 94 |
+
stop_date = get_last_date_of_month(stop_year, stop_mon)
|
| 95 |
+
|
| 96 |
+
# Start pytrends for US region
|
| 97 |
+
pytrends = TrendReq(hl='en-US', tz=360)
|
| 98 |
+
# Initialize build_payload with the word we need data for
|
| 99 |
+
build_payload = partial(pytrends.build_payload,
|
| 100 |
+
kw_list=[word], cat=0, geo=geo, gprop='')
|
| 101 |
+
|
| 102 |
+
# Obtain monthly data for all months in years [start_year, stop_year]
|
| 103 |
+
monthly = _fetch_data(pytrends, build_payload,
|
| 104 |
+
convert_dates_to_timeframe(start_date, stop_date))
|
| 105 |
+
|
| 106 |
+
# Get daily data, month by month
|
| 107 |
+
results = {}
|
| 108 |
+
# if a timeout or too many requests error occur we need to adjust wait time
|
| 109 |
+
current = start_date
|
| 110 |
+
while current < stop_date:
|
| 111 |
+
last_date_of_month = get_last_date_of_month(current.year, current.month)
|
| 112 |
+
timeframe = convert_dates_to_timeframe(current, last_date_of_month)
|
| 113 |
+
if verbose:
|
| 114 |
+
print(f'{word}:{timeframe}')
|
| 115 |
+
results[current] = _fetch_data(pytrends, build_payload, timeframe)
|
| 116 |
+
current = last_date_of_month + timedelta(days=1)
|
| 117 |
+
sleep(wait_time) # don't go too fast or Google will send 429s
|
| 118 |
+
|
| 119 |
+
daily = pd.concat(results.values()).drop(columns=['isPartial'])
|
| 120 |
+
complete = daily.join(monthly, lsuffix='_unscaled', rsuffix='_monthly')
|
| 121 |
+
|
| 122 |
+
# Scale daily data by monthly weights so the data is comparable
|
| 123 |
+
complete[f'{word}_monthly'].ffill(inplace=True) # fill NaN values
|
| 124 |
+
complete['scale'] = complete[f'{word}_monthly'] / 100
|
| 125 |
+
complete[word] = complete[f'{word}_unscaled'] * complete.scale
|
| 126 |
+
|
| 127 |
+
return complete
|
pytrends/exceptions.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class ResponseError(Exception):
|
| 2 |
+
""" Something was wrong with the response from Google. """
|
| 3 |
+
|
| 4 |
+
def __init__(self, message, response):
|
| 5 |
+
super().__init__(message)
|
| 6 |
+
# pass response so it can be handled upstream
|
| 7 |
+
self.response = response
|
| 8 |
+
|
| 9 |
+
@classmethod
|
| 10 |
+
def from_response(cls, response):
|
| 11 |
+
message = f'The request failed: Google returned a response with code {response.status_code}'
|
| 12 |
+
return cls(message, response)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class TooManyRequestsError(ResponseError):
|
| 16 |
+
""" Exception raised when the backend returns a 429 error code. """
|
| 17 |
+
pass
|
pytrends/request.py
ADDED
|
@@ -0,0 +1,609 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import requests
|
| 5 |
+
|
| 6 |
+
from requests.adapters import HTTPAdapter
|
| 7 |
+
from requests.packages.urllib3.util.retry import Retry
|
| 8 |
+
from requests import status_codes
|
| 9 |
+
|
| 10 |
+
from pytrends import exceptions
|
| 11 |
+
|
| 12 |
+
from urllib.parse import quote
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
BASE_TRENDS_URL = 'https://trends.google.com/trends'
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class TrendReq(object):
|
| 19 |
+
"""
|
| 20 |
+
Google Trends API
|
| 21 |
+
"""
|
| 22 |
+
GET_METHOD = 'get'
|
| 23 |
+
POST_METHOD = 'post'
|
| 24 |
+
GENERAL_URL = f'{BASE_TRENDS_URL}/api/explore'
|
| 25 |
+
INTEREST_OVER_TIME_URL = f'{BASE_TRENDS_URL}/api/widgetdata/multiline'
|
| 26 |
+
MULTIRANGE_INTEREST_OVER_TIME_URL = f'{BASE_TRENDS_URL}/api/widgetdata/multirange'
|
| 27 |
+
INTEREST_BY_REGION_URL = f'{BASE_TRENDS_URL}/api/widgetdata/comparedgeo'
|
| 28 |
+
RELATED_QUERIES_URL = f'{BASE_TRENDS_URL}/api/widgetdata/relatedsearches'
|
| 29 |
+
TRENDING_SEARCHES_URL = f'{BASE_TRENDS_URL}/hottrends/visualize/internal/data'
|
| 30 |
+
TOP_CHARTS_URL = f'{BASE_TRENDS_URL}/api/topcharts'
|
| 31 |
+
SUGGESTIONS_URL = f'{BASE_TRENDS_URL}/api/autocomplete/'
|
| 32 |
+
CATEGORIES_URL = f'{BASE_TRENDS_URL}/api/explore/pickers/category'
|
| 33 |
+
TODAY_SEARCHES_URL = f'{BASE_TRENDS_URL}/api/dailytrends'
|
| 34 |
+
REALTIME_TRENDING_SEARCHES_URL = f'{BASE_TRENDS_URL}/api/realtimetrends'
|
| 35 |
+
TRENDS_URL = f'{BASE_TRENDS_URL}/api/trends'
|
| 36 |
+
ERROR_CODES = (500, 502, 504, 429)
|
| 37 |
+
|
| 38 |
+
def __init__(self, hl='en-US', tz=360, geo='', timeout=(2, 5), proxies='',
|
| 39 |
+
retries=0, backoff_factor=0, requests_args=None):
|
| 40 |
+
"""
|
| 41 |
+
Initialize default values for params
|
| 42 |
+
"""
|
| 43 |
+
# google rate limit
|
| 44 |
+
self.google_rl = 'You have reached your quota limit. Please try again later.'
|
| 45 |
+
self.results = None
|
| 46 |
+
# set user defined options used globally
|
| 47 |
+
self.tz = tz
|
| 48 |
+
self.hl = hl
|
| 49 |
+
self.geo = geo
|
| 50 |
+
self.kw_list = list()
|
| 51 |
+
self.timeout = timeout
|
| 52 |
+
self.proxies = proxies # add a proxy option
|
| 53 |
+
self.retries = retries
|
| 54 |
+
self.backoff_factor = backoff_factor
|
| 55 |
+
self.proxy_index = 0
|
| 56 |
+
self.requests_args = requests_args or {}
|
| 57 |
+
self.cookies = self.GetGoogleCookie()
|
| 58 |
+
# intialize widget payloads
|
| 59 |
+
self.token_payload = dict()
|
| 60 |
+
self.interest_over_time_widget = dict()
|
| 61 |
+
self.interest_by_region_widget = dict()
|
| 62 |
+
self.related_topics_widget_list = list()
|
| 63 |
+
self.related_queries_widget_list = list()
|
| 64 |
+
|
| 65 |
+
self.headers = {'accept-language': self.hl}
|
| 66 |
+
self.headers.update(self.requests_args.pop('headers', {}))
|
| 67 |
+
|
| 68 |
+
def GetGoogleCookie(self):
|
| 69 |
+
"""
|
| 70 |
+
Gets google cookie (used for each and every proxy; once on init otherwise)
|
| 71 |
+
Removes proxy from the list on proxy error
|
| 72 |
+
"""
|
| 73 |
+
while True:
|
| 74 |
+
if "proxies" in self.requests_args:
|
| 75 |
+
try:
|
| 76 |
+
return dict(filter(lambda i: i[0] == 'NID', requests.get(
|
| 77 |
+
f'{BASE_TRENDS_URL}/explore/?geo={self.hl[-2:]}',
|
| 78 |
+
timeout=self.timeout,
|
| 79 |
+
**self.requests_args
|
| 80 |
+
).cookies.items()))
|
| 81 |
+
except:
|
| 82 |
+
continue
|
| 83 |
+
else:
|
| 84 |
+
if len(self.proxies) > 0:
|
| 85 |
+
proxy = {'https': self.proxies[self.proxy_index]}
|
| 86 |
+
else:
|
| 87 |
+
proxy = ''
|
| 88 |
+
try:
|
| 89 |
+
return dict(filter(lambda i: i[0] == 'NID', requests.get(
|
| 90 |
+
f'{BASE_TRENDS_URL}/explore/?geo={self.hl[-2:]}',
|
| 91 |
+
timeout=self.timeout,
|
| 92 |
+
proxies=proxy,
|
| 93 |
+
**self.requests_args
|
| 94 |
+
).cookies.items()))
|
| 95 |
+
except requests.exceptions.ProxyError:
|
| 96 |
+
print('Proxy error. Changing IP')
|
| 97 |
+
if len(self.proxies) > 1:
|
| 98 |
+
self.proxies.remove(self.proxies[self.proxy_index])
|
| 99 |
+
else:
|
| 100 |
+
print('No more proxies available. Bye!')
|
| 101 |
+
raise
|
| 102 |
+
continue
|
| 103 |
+
|
| 104 |
+
def GetNewProxy(self):
|
| 105 |
+
"""
|
| 106 |
+
Increment proxy INDEX; zero on overflow
|
| 107 |
+
"""
|
| 108 |
+
if self.proxy_index < (len(self.proxies) - 1):
|
| 109 |
+
self.proxy_index += 1
|
| 110 |
+
else:
|
| 111 |
+
self.proxy_index = 0
|
| 112 |
+
|
| 113 |
+
def _get_data(self, url, method=GET_METHOD, trim_chars=0, **kwargs):
|
| 114 |
+
"""Send a request to Google and return the JSON response as a Python object
|
| 115 |
+
:param url: the url to which the request will be sent
|
| 116 |
+
:param method: the HTTP method ('get' or 'post')
|
| 117 |
+
:param trim_chars: how many characters should be trimmed off the beginning of the content of the response
|
| 118 |
+
before this is passed to the JSON parser
|
| 119 |
+
:param kwargs: any extra key arguments passed to the request builder (usually query parameters or data)
|
| 120 |
+
:return:
|
| 121 |
+
"""
|
| 122 |
+
s = requests.session()
|
| 123 |
+
# Retries mechanism. Activated when one of statements >0 (best used for proxy)
|
| 124 |
+
if self.retries > 0 or self.backoff_factor > 0:
|
| 125 |
+
retry = Retry(total=self.retries, read=self.retries,
|
| 126 |
+
connect=self.retries,
|
| 127 |
+
backoff_factor=self.backoff_factor,
|
| 128 |
+
status_forcelist=TrendReq.ERROR_CODES,
|
| 129 |
+
method_whitelist=frozenset(['GET', 'POST']))
|
| 130 |
+
s.mount('https://', HTTPAdapter(max_retries=retry))
|
| 131 |
+
|
| 132 |
+
s.headers.update(self.headers)
|
| 133 |
+
if len(self.proxies) > 0:
|
| 134 |
+
self.cookies = self.GetGoogleCookie()
|
| 135 |
+
s.proxies.update({'https': self.proxies[self.proxy_index]})
|
| 136 |
+
if method == TrendReq.POST_METHOD:
|
| 137 |
+
response = s.post(url, timeout=self.timeout,
|
| 138 |
+
cookies=self.cookies, **kwargs,
|
| 139 |
+
**self.requests_args) # DO NOT USE retries or backoff_factor here
|
| 140 |
+
else:
|
| 141 |
+
response = s.get(url, timeout=self.timeout, cookies=self.cookies,
|
| 142 |
+
**kwargs, **self.requests_args) # DO NOT USE retries or backoff_factor here
|
| 143 |
+
# check if the response contains json and throw an exception otherwise
|
| 144 |
+
# Google mostly sends 'application/json' in the Content-Type header,
|
| 145 |
+
# but occasionally it sends 'application/javascript
|
| 146 |
+
# and sometimes even 'text/javascript
|
| 147 |
+
if response.status_code == 200 and 'application/json' in \
|
| 148 |
+
response.headers['Content-Type'] or \
|
| 149 |
+
'application/javascript' in response.headers['Content-Type'] or \
|
| 150 |
+
'text/javascript' in response.headers['Content-Type']:
|
| 151 |
+
# trim initial characters
|
| 152 |
+
# some responses start with garbage characters, like ")]}',"
|
| 153 |
+
# these have to be cleaned before being passed to the json parser
|
| 154 |
+
content = response.text[trim_chars:]
|
| 155 |
+
# parse json
|
| 156 |
+
self.GetNewProxy()
|
| 157 |
+
return json.loads(content)
|
| 158 |
+
else:
|
| 159 |
+
if response.status_code == status_codes.codes.too_many_requests:
|
| 160 |
+
raise exceptions.TooManyRequestsError.from_response(response)
|
| 161 |
+
raise exceptions.ResponseError.from_response(response)
|
| 162 |
+
|
| 163 |
+
def build_payload(self, kw_list, cat=0, timeframe='today 5-y', geo='',
|
| 164 |
+
gprop=''):
|
| 165 |
+
"""Create the payload for related queries, interest over time and interest by region"""
|
| 166 |
+
if gprop not in ['', 'images', 'news', 'youtube', 'froogle']:
|
| 167 |
+
raise ValueError('gprop must be empty (to indicate web), images, news, youtube, or froogle')
|
| 168 |
+
self.kw_list = kw_list
|
| 169 |
+
self.geo = geo or self.geo
|
| 170 |
+
self.token_payload = {
|
| 171 |
+
'hl': self.hl,
|
| 172 |
+
'tz': self.tz,
|
| 173 |
+
'req': {'comparisonItem': [], 'category': cat, 'property': gprop}
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
# Check if timeframe is a list
|
| 177 |
+
if isinstance(timeframe, list):
|
| 178 |
+
for index, kw in enumerate(self.kw_list):
|
| 179 |
+
keyword_payload = {'keyword': kw, 'time': timeframe[index], 'geo': self.geo}
|
| 180 |
+
self.token_payload['req']['comparisonItem'].append(keyword_payload)
|
| 181 |
+
else:
|
| 182 |
+
# build out json for each keyword with
|
| 183 |
+
for kw in self.kw_list:
|
| 184 |
+
keyword_payload = {'keyword': kw, 'time': timeframe, 'geo': self.geo}
|
| 185 |
+
self.token_payload['req']['comparisonItem'].append(keyword_payload)
|
| 186 |
+
|
| 187 |
+
# requests will mangle this if it is not a string
|
| 188 |
+
self.token_payload['req'] = json.dumps(self.token_payload['req'])
|
| 189 |
+
# get tokens
|
| 190 |
+
self._tokens()
|
| 191 |
+
return
|
| 192 |
+
|
| 193 |
+
def _tokens(self):
|
| 194 |
+
"""Makes request to Google to get API tokens for interest over time, interest by region and related queries"""
|
| 195 |
+
# make the request and parse the returned json
|
| 196 |
+
widget_dicts = self._get_data(
|
| 197 |
+
url=TrendReq.GENERAL_URL,
|
| 198 |
+
method=TrendReq.POST_METHOD,
|
| 199 |
+
params=self.token_payload,
|
| 200 |
+
trim_chars=4,
|
| 201 |
+
)['widgets']
|
| 202 |
+
# order of the json matters...
|
| 203 |
+
first_region_token = True
|
| 204 |
+
# clear self.related_queries_widget_list and self.related_topics_widget_list
|
| 205 |
+
# of old keywords'widgets
|
| 206 |
+
self.related_queries_widget_list[:] = []
|
| 207 |
+
self.related_topics_widget_list[:] = []
|
| 208 |
+
# assign requests
|
| 209 |
+
for widget in widget_dicts:
|
| 210 |
+
if widget['id'] == 'TIMESERIES':
|
| 211 |
+
self.interest_over_time_widget = widget
|
| 212 |
+
if widget['id'] == 'GEO_MAP' and first_region_token:
|
| 213 |
+
self.interest_by_region_widget = widget
|
| 214 |
+
first_region_token = False
|
| 215 |
+
# response for each term, put into a list
|
| 216 |
+
if 'RELATED_TOPICS' in widget['id']:
|
| 217 |
+
self.related_topics_widget_list.append(widget)
|
| 218 |
+
if 'RELATED_QUERIES' in widget['id']:
|
| 219 |
+
self.related_queries_widget_list.append(widget)
|
| 220 |
+
return
|
| 221 |
+
|
| 222 |
+
def interest_over_time(self):
|
| 223 |
+
"""Request data from Google's Interest Over Time section and return a dataframe"""
|
| 224 |
+
|
| 225 |
+
over_time_payload = {
|
| 226 |
+
# convert to string as requests will mangle
|
| 227 |
+
'req': json.dumps(self.interest_over_time_widget['request']),
|
| 228 |
+
'token': self.interest_over_time_widget['token'],
|
| 229 |
+
'tz': self.tz
|
| 230 |
+
}
|
| 231 |
+
|
| 232 |
+
# make the request and parse the returned json
|
| 233 |
+
req_json = self._get_data(
|
| 234 |
+
url=TrendReq.INTEREST_OVER_TIME_URL,
|
| 235 |
+
method=TrendReq.GET_METHOD,
|
| 236 |
+
trim_chars=5,
|
| 237 |
+
params=over_time_payload,
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
df = pd.DataFrame(req_json['default']['timelineData'])
|
| 241 |
+
if (df.empty):
|
| 242 |
+
return df
|
| 243 |
+
|
| 244 |
+
df['date'] = pd.to_datetime(df['time'].astype(dtype='float64'),
|
| 245 |
+
unit='s')
|
| 246 |
+
df = df.set_index(['date']).sort_index()
|
| 247 |
+
# split list columns into seperate ones, remove brackets and split on comma
|
| 248 |
+
result_df = df['value'].apply(lambda x: pd.Series(
|
| 249 |
+
str(x).replace('[', '').replace(']', '').split(',')))
|
| 250 |
+
# rename each column with its search term, relying on order that google provides...
|
| 251 |
+
for idx, kw in enumerate(self.kw_list):
|
| 252 |
+
# there is currently a bug with assigning columns that may be
|
| 253 |
+
# parsed as a date in pandas: use explicit insert column method
|
| 254 |
+
result_df.insert(len(result_df.columns), kw,
|
| 255 |
+
result_df[idx].astype('int'))
|
| 256 |
+
del result_df[idx]
|
| 257 |
+
|
| 258 |
+
if 'isPartial' in df:
|
| 259 |
+
# make other dataframe from isPartial key data
|
| 260 |
+
# split list columns into seperate ones, remove brackets and split on comma
|
| 261 |
+
df = df.fillna(False)
|
| 262 |
+
result_df2 = df['isPartial'].apply(lambda x: pd.Series(
|
| 263 |
+
str(x).replace('[', '').replace(']', '').split(',')))
|
| 264 |
+
result_df2.columns = ['isPartial']
|
| 265 |
+
# Change to a bool type.
|
| 266 |
+
result_df2.isPartial = result_df2.isPartial == 'True'
|
| 267 |
+
# concatenate the two dataframes
|
| 268 |
+
final = pd.concat([result_df, result_df2], axis=1)
|
| 269 |
+
else:
|
| 270 |
+
final = result_df
|
| 271 |
+
final['isPartial'] = False
|
| 272 |
+
|
| 273 |
+
return final
|
| 274 |
+
|
| 275 |
+
def multirange_interest_over_time(self):
|
| 276 |
+
"""Request data from Google's Interest Over Time section across different time ranges and return a dataframe"""
|
| 277 |
+
|
| 278 |
+
over_time_payload = {
|
| 279 |
+
# convert to string as requests will mangle
|
| 280 |
+
'req': json.dumps(self.interest_over_time_widget['request']),
|
| 281 |
+
'token': self.interest_over_time_widget['token'],
|
| 282 |
+
'tz': self.tz
|
| 283 |
+
}
|
| 284 |
+
|
| 285 |
+
# make the request and parse the returned json
|
| 286 |
+
req_json = self._get_data(
|
| 287 |
+
url=TrendReq.MULTIRANGE_INTEREST_OVER_TIME_URL,
|
| 288 |
+
method=TrendReq.GET_METHOD,
|
| 289 |
+
trim_chars=5,
|
| 290 |
+
params=over_time_payload,
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
df = pd.DataFrame(req_json['default']['timelineData'])
|
| 294 |
+
if (df.empty):
|
| 295 |
+
return df
|
| 296 |
+
|
| 297 |
+
result_df = pd.json_normalize(df['columnData'])
|
| 298 |
+
|
| 299 |
+
# Split dictionary columns into seperate ones
|
| 300 |
+
for i, column in enumerate(result_df.columns):
|
| 301 |
+
result_df["[" + str(i) + "] " + str(self.kw_list[i]) + " date"] = result_df[i].apply(pd.Series)["formattedTime"]
|
| 302 |
+
result_df["[" + str(i) + "] " + str(self.kw_list[i]) + " value"] = result_df[i].apply(pd.Series)["value"]
|
| 303 |
+
result_df = result_df.drop([i], axis=1)
|
| 304 |
+
|
| 305 |
+
# Adds a row with the averages at the top of the dataframe
|
| 306 |
+
avg_row = {}
|
| 307 |
+
for i, avg in enumerate(req_json['default']['averages']):
|
| 308 |
+
avg_row["[" + str(i) + "] " + str(self.kw_list[i]) + " date"] = "Average"
|
| 309 |
+
avg_row["[" + str(i) + "] " + str(self.kw_list[i]) + " value"] = req_json['default']['averages'][i]
|
| 310 |
+
|
| 311 |
+
result_df.loc[-1] = avg_row
|
| 312 |
+
result_df.index = result_df.index + 1
|
| 313 |
+
result_df = result_df.sort_index()
|
| 314 |
+
|
| 315 |
+
return result_df
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
def interest_by_region(self, resolution='COUNTRY', inc_low_vol=False,
|
| 319 |
+
inc_geo_code=False):
|
| 320 |
+
"""Request data from Google's Interest by Region section and return a dataframe"""
|
| 321 |
+
|
| 322 |
+
# make the request
|
| 323 |
+
region_payload = dict()
|
| 324 |
+
if self.geo == '':
|
| 325 |
+
self.interest_by_region_widget['request'][
|
| 326 |
+
'resolution'] = resolution
|
| 327 |
+
elif self.geo == 'US' and resolution in ['DMA', 'CITY', 'REGION']:
|
| 328 |
+
self.interest_by_region_widget['request'][
|
| 329 |
+
'resolution'] = resolution
|
| 330 |
+
|
| 331 |
+
self.interest_by_region_widget['request'][
|
| 332 |
+
'includeLowSearchVolumeGeos'] = inc_low_vol
|
| 333 |
+
|
| 334 |
+
# convert to string as requests will mangle
|
| 335 |
+
region_payload['req'] = json.dumps(
|
| 336 |
+
self.interest_by_region_widget['request'])
|
| 337 |
+
region_payload['token'] = self.interest_by_region_widget['token']
|
| 338 |
+
region_payload['tz'] = self.tz
|
| 339 |
+
|
| 340 |
+
# parse returned json
|
| 341 |
+
req_json = self._get_data(
|
| 342 |
+
url=TrendReq.INTEREST_BY_REGION_URL,
|
| 343 |
+
method=TrendReq.GET_METHOD,
|
| 344 |
+
trim_chars=5,
|
| 345 |
+
params=region_payload,
|
| 346 |
+
)
|
| 347 |
+
df = pd.DataFrame(req_json['default']['geoMapData'])
|
| 348 |
+
if (df.empty):
|
| 349 |
+
return df
|
| 350 |
+
|
| 351 |
+
# rename the column with the search keyword
|
| 352 |
+
geo_column = 'geoCode' if 'geoCode' in df.columns else 'coordinates'
|
| 353 |
+
columns = ['geoName', geo_column, 'value']
|
| 354 |
+
df = df[columns].set_index(['geoName']).sort_index()
|
| 355 |
+
# split list columns into separate ones, remove brackets and split on comma
|
| 356 |
+
result_df = df['value'].apply(lambda x: pd.Series(
|
| 357 |
+
str(x).replace('[', '').replace(']', '').split(',')))
|
| 358 |
+
if inc_geo_code:
|
| 359 |
+
if geo_column in df.columns:
|
| 360 |
+
result_df[geo_column] = df[geo_column]
|
| 361 |
+
else:
|
| 362 |
+
print('Could not find geo_code column; Skipping')
|
| 363 |
+
|
| 364 |
+
# rename each column with its search term
|
| 365 |
+
for idx, kw in enumerate(self.kw_list):
|
| 366 |
+
result_df[kw] = result_df[idx].astype('int')
|
| 367 |
+
del result_df[idx]
|
| 368 |
+
|
| 369 |
+
return result_df
|
| 370 |
+
|
| 371 |
+
def related_topics(self):
|
| 372 |
+
"""Request data from Google's Related Topics section and return a dictionary of dataframes
|
| 373 |
+
|
| 374 |
+
If no top and/or rising related topics are found, the value for the key "top" and/or "rising" will be None
|
| 375 |
+
"""
|
| 376 |
+
|
| 377 |
+
# make the request
|
| 378 |
+
related_payload = dict()
|
| 379 |
+
result_dict = dict()
|
| 380 |
+
for request_json in self.related_topics_widget_list:
|
| 381 |
+
# ensure we know which keyword we are looking at rather than relying on order
|
| 382 |
+
try:
|
| 383 |
+
kw = request_json['request']['restriction'][
|
| 384 |
+
'complexKeywordsRestriction']['keyword'][0]['value']
|
| 385 |
+
except KeyError:
|
| 386 |
+
kw = ''
|
| 387 |
+
# convert to string as requests will mangle
|
| 388 |
+
related_payload['req'] = json.dumps(request_json['request'])
|
| 389 |
+
related_payload['token'] = request_json['token']
|
| 390 |
+
related_payload['tz'] = self.tz
|
| 391 |
+
|
| 392 |
+
# parse the returned json
|
| 393 |
+
req_json = self._get_data(
|
| 394 |
+
url=TrendReq.RELATED_QUERIES_URL,
|
| 395 |
+
method=TrendReq.GET_METHOD,
|
| 396 |
+
trim_chars=5,
|
| 397 |
+
params=related_payload,
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
# top topics
|
| 401 |
+
try:
|
| 402 |
+
top_list = req_json['default']['rankedList'][0]['rankedKeyword']
|
| 403 |
+
df_top = pd.json_normalize(top_list, sep='_')
|
| 404 |
+
except KeyError:
|
| 405 |
+
# in case no top topics are found, the lines above will throw a KeyError
|
| 406 |
+
df_top = None
|
| 407 |
+
|
| 408 |
+
# rising topics
|
| 409 |
+
try:
|
| 410 |
+
rising_list = req_json['default']['rankedList'][1]['rankedKeyword']
|
| 411 |
+
df_rising = pd.json_normalize(rising_list, sep='_')
|
| 412 |
+
except KeyError:
|
| 413 |
+
# in case no rising topics are found, the lines above will throw a KeyError
|
| 414 |
+
df_rising = None
|
| 415 |
+
|
| 416 |
+
result_dict[kw] = {'rising': df_rising, 'top': df_top}
|
| 417 |
+
return result_dict
|
| 418 |
+
|
| 419 |
+
def related_queries(self):
|
| 420 |
+
"""Request data from Google's Related Queries section and return a dictionary of dataframes
|
| 421 |
+
|
| 422 |
+
If no top and/or rising related queries are found, the value for the key "top" and/or "rising" will be None
|
| 423 |
+
"""
|
| 424 |
+
|
| 425 |
+
# make the request
|
| 426 |
+
related_payload = dict()
|
| 427 |
+
result_dict = dict()
|
| 428 |
+
for request_json in self.related_queries_widget_list:
|
| 429 |
+
# ensure we know which keyword we are looking at rather than relying on order
|
| 430 |
+
try:
|
| 431 |
+
kw = request_json['request']['restriction'][
|
| 432 |
+
'complexKeywordsRestriction']['keyword'][0]['value']
|
| 433 |
+
except KeyError:
|
| 434 |
+
kw = ''
|
| 435 |
+
# convert to string as requests will mangle
|
| 436 |
+
related_payload['req'] = json.dumps(request_json['request'])
|
| 437 |
+
related_payload['token'] = request_json['token']
|
| 438 |
+
related_payload['tz'] = self.tz
|
| 439 |
+
|
| 440 |
+
# parse the returned json
|
| 441 |
+
req_json = self._get_data(
|
| 442 |
+
url=TrendReq.RELATED_QUERIES_URL,
|
| 443 |
+
method=TrendReq.GET_METHOD,
|
| 444 |
+
trim_chars=5,
|
| 445 |
+
params=related_payload,
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
# top queries
|
| 449 |
+
try:
|
| 450 |
+
top_df = pd.DataFrame(
|
| 451 |
+
req_json['default']['rankedList'][0]['rankedKeyword'])
|
| 452 |
+
top_df = top_df[['query', 'value']]
|
| 453 |
+
except KeyError:
|
| 454 |
+
# in case no top queries are found, the lines above will throw a KeyError
|
| 455 |
+
top_df = None
|
| 456 |
+
|
| 457 |
+
# rising queries
|
| 458 |
+
try:
|
| 459 |
+
rising_df = pd.DataFrame(
|
| 460 |
+
req_json['default']['rankedList'][1]['rankedKeyword'])
|
| 461 |
+
rising_df = rising_df[['query', 'value']]
|
| 462 |
+
except KeyError:
|
| 463 |
+
# in case no rising queries are found, the lines above will throw a KeyError
|
| 464 |
+
rising_df = None
|
| 465 |
+
|
| 466 |
+
result_dict[kw] = {'top': top_df, 'rising': rising_df}
|
| 467 |
+
return result_dict
|
| 468 |
+
|
| 469 |
+
def trending_searches(self, pn='united_states'):
|
| 470 |
+
"""Request data from Google's Hot Searches section and return a dataframe"""
|
| 471 |
+
|
| 472 |
+
# make the request
|
| 473 |
+
# forms become obsolete due to the new TRENDING_SEARCHES_URL
|
| 474 |
+
# forms = {'ajax': 1, 'pn': pn, 'htd': '', 'htv': 'l'}
|
| 475 |
+
req_json = self._get_data(
|
| 476 |
+
url=TrendReq.TRENDING_SEARCHES_URL,
|
| 477 |
+
method=TrendReq.GET_METHOD
|
| 478 |
+
)[pn]
|
| 479 |
+
print(req_json)
|
| 480 |
+
result_df = pd.DataFrame(req_json)
|
| 481 |
+
return result_df
|
| 482 |
+
|
| 483 |
+
def today_searches(self, pn='US'):
|
| 484 |
+
"""Request data from Google Daily Trends section and returns a dataframe"""
|
| 485 |
+
forms = {'ns': 15, 'geo': pn, 'tz': '-180', 'hl': self.hl}
|
| 486 |
+
req_json = self._get_data(
|
| 487 |
+
url=TrendReq.TODAY_SEARCHES_URL,
|
| 488 |
+
method=TrendReq.GET_METHOD,
|
| 489 |
+
trim_chars=5,
|
| 490 |
+
params=forms,
|
| 491 |
+
**self.requests_args
|
| 492 |
+
)['default']['trendingSearchesDays'][0]['trendingSearches']
|
| 493 |
+
# parse the returned jso
|
| 494 |
+
|
| 495 |
+
return req_json
|
| 496 |
+
|
| 497 |
+
def realtime_trending_searches(self, pn='US', cat='all', count =300):
|
| 498 |
+
"""Request data from Google Realtime Search Trends section and returns a dataframe"""
|
| 499 |
+
# Don't know what some of the params mean here, followed the nodejs library
|
| 500 |
+
# https://github.com/pat310/google-trends-api/ 's implemenration
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
#sort: api accepts only 0 as the value, optional parameter
|
| 504 |
+
|
| 505 |
+
# ri: number of trending stories IDs returned,
|
| 506 |
+
# max value of ri supported is 300, based on emperical evidence
|
| 507 |
+
|
| 508 |
+
ri_value = 300
|
| 509 |
+
if count < ri_value:
|
| 510 |
+
ri_value = count
|
| 511 |
+
|
| 512 |
+
# rs : don't know what is does but it's max value is never more than the ri_value based on emperical evidence
|
| 513 |
+
# max value of ri supported is 200, based on emperical evidence
|
| 514 |
+
rs_value = 200
|
| 515 |
+
if count < rs_value:
|
| 516 |
+
rs_value = count-1
|
| 517 |
+
|
| 518 |
+
forms = {'ns': 15, 'geo': pn, 'tz': '300', 'hl': self.hl, 'cat': cat, 'fi' : '0', 'fs' : '0', 'ri' : ri_value, 'rs' : rs_value, 'sort' : 0}
|
| 519 |
+
req_json = self._get_data(
|
| 520 |
+
url=TrendReq.REALTIME_TRENDING_SEARCHES_URL,
|
| 521 |
+
method=TrendReq.GET_METHOD,
|
| 522 |
+
trim_chars=5,
|
| 523 |
+
params=forms
|
| 524 |
+
)['storySummaries']['trendingStories']
|
| 525 |
+
|
| 526 |
+
return req_json
|
| 527 |
+
|
| 528 |
+
def top_charts(self, date, hl='en-US', tz=300, geo='GLOBAL'):
|
| 529 |
+
"""Request data from Google's Top Charts section and return a dataframe"""
|
| 530 |
+
|
| 531 |
+
try:
|
| 532 |
+
date = int(date)
|
| 533 |
+
except:
|
| 534 |
+
raise ValueError(
|
| 535 |
+
'The date must be a year with format YYYY. See https://github.com/GeneralMills/pytrends/issues/355')
|
| 536 |
+
|
| 537 |
+
# create the payload
|
| 538 |
+
chart_payload = {'hl': hl, 'tz': tz, 'date': date, 'geo': geo,
|
| 539 |
+
'isMobile': False}
|
| 540 |
+
|
| 541 |
+
# make the request and parse the returned json
|
| 542 |
+
req_json = self._get_data(
|
| 543 |
+
url=TrendReq.TOP_CHARTS_URL,
|
| 544 |
+
method=TrendReq.GET_METHOD,
|
| 545 |
+
trim_chars=5,
|
| 546 |
+
params=chart_payload
|
| 547 |
+
)
|
| 548 |
+
try:
|
| 549 |
+
df = pd.DataFrame(req_json['topCharts'][0]['listItems'])
|
| 550 |
+
except IndexError:
|
| 551 |
+
df = None
|
| 552 |
+
return df
|
| 553 |
+
|
| 554 |
+
def trends(self, date, hl='en-US', tz=300, geo='GLOBAL'):
|
| 555 |
+
"""Request data from Google's Top Charts section and return a dataframe"""
|
| 556 |
+
|
| 557 |
+
# create the payload
|
| 558 |
+
chart_payload = {'hl': hl, 'tz': tz, 'date': date, 'geo': geo,
|
| 559 |
+
'isMobile': False}
|
| 560 |
+
|
| 561 |
+
# make the request and parse the returned json
|
| 562 |
+
req_json = self._get_data(
|
| 563 |
+
url=TrendReq.GENERAL_URL,
|
| 564 |
+
method=TrendReq.GET_METHOD,
|
| 565 |
+
trim_chars=5,
|
| 566 |
+
params=chart_payload
|
| 567 |
+
)
|
| 568 |
+
try:
|
| 569 |
+
df = pd.DataFrame(req_json['topCharts'][0]['listItems'])
|
| 570 |
+
except IndexError:
|
| 571 |
+
df = None
|
| 572 |
+
return df
|
| 573 |
+
|
| 574 |
+
def suggestions(self, keyword):
|
| 575 |
+
"""Request data from Google's Keyword Suggestion dropdown and return a dictionary"""
|
| 576 |
+
|
| 577 |
+
# make the request
|
| 578 |
+
kw_param = quote(keyword)
|
| 579 |
+
parameters = {'hl': self.hl}
|
| 580 |
+
|
| 581 |
+
req_json = self._get_data(
|
| 582 |
+
url=TrendReq.SUGGESTIONS_URL + kw_param,
|
| 583 |
+
params=parameters,
|
| 584 |
+
method=TrendReq.GET_METHOD,
|
| 585 |
+
trim_chars=5
|
| 586 |
+
)['default']['topics']
|
| 587 |
+
return req_json
|
| 588 |
+
|
| 589 |
+
def categories(self):
|
| 590 |
+
"""Request available categories data from Google's API and return a dictionary"""
|
| 591 |
+
|
| 592 |
+
params = {'hl': self.hl}
|
| 593 |
+
|
| 594 |
+
req_json = self._get_data(
|
| 595 |
+
url=TrendReq.CATEGORIES_URL,
|
| 596 |
+
params=params,
|
| 597 |
+
method=TrendReq.GET_METHOD,
|
| 598 |
+
trim_chars=5
|
| 599 |
+
)
|
| 600 |
+
return req_json
|
| 601 |
+
|
| 602 |
+
def get_historical_interest(self, *args, **kwargs):
|
| 603 |
+
raise NotImplementedError(
|
| 604 |
+
"""This method has been removed for incorrectness. It will be removed completely in v5.
|
| 605 |
+
If you'd like similar functionality, please try implementing it yourself and consider submitting a pull request to add it to pytrends.
|
| 606 |
+
|
| 607 |
+
There is discussion at:
|
| 608 |
+
https://github.com/GeneralMills/pytrends/pull/542"""
|
| 609 |
+
)
|