Spaces:
Sleeping
Sleeping
File size: 41,338 Bytes
9a804ac 7a876be 9a804ac 7a876be 9a804ac 7a876be 83c1c84 7a876be 9a804ac 4705276 9a804ac c88e120 9a804ac 7a876be 0fae1d4 7a876be 9a804ac 0fae1d4 9a804ac 7a876be 0fae1d4 7a876be 0fae1d4 19d76b7 7a876be 83c1c84 0fae1d4 83c1c84 9a804ac 8c44016 0fae1d4 19d76b7 0fae1d4 19d76b7 c73cf52 0fae1d4 19d76b7 0fae1d4 19d76b7 c73cf52 0fae1d4 9a804ac 0fae1d4 9a804ac 11f7c51 9a804ac 7a876be 9a804ac 7a876be 9a804ac e11009a 9a804ac 0fae1d4 19d76b7 8c44016 7a876be 9a804ac 7a876be 0fae1d4 9a804ac 0fae1d4 9a804ac 8c44016 0fae1d4 9a804ac 0fae1d4 9a804ac 0fae1d4 9a804ac 0fae1d4 9a804ac 2f94940 7a876be 83c1c84 7a876be 2f94940 7a876be 0fae1d4 7a876be 0fae1d4 7a876be 0fae1d4 7a876be 83c1c84 19d76b7 83c1c84 8c44016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 |
import io
import os
import openai
import re
import sqlite3
import base64
import calendar
import json
import time
import uuid
from reportlab.platypus import SimpleDocTemplate, Paragraph
from reportlab.lib.styles import getSampleStyleSheet
import streamlit as st
from streamlit_js_eval import streamlit_js_eval
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores.azuresearch import AzureSearch
from azure.storage.blob import BlobServiceClient
from azure.cosmos import CosmosClient, exceptions
from PyPDF2 import PdfReader
import openai
import sendgrid
from sendgrid.helpers.mail import Mail, Attachment, FileContent, FileName, FileType, Disposition
from twilio.rest import Client
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
openai.api_key = os.getenv("OPENAI_API_KEY")
openai.api_base = "https://tensora-oai-sweden.openai.azure.com/"
openai.api_type = "azure"
openai.api_version = "2023-12-01-preview"
connection_string = os.getenv("CONNECTION")
blob_service_client = BlobServiceClient.from_connection_string(connection_string)
def upload_blob(pdf_name, json_data, pdf_data_jobdescription,pdf_data_cvs, pre_generated_bool, custom_questions):
try:
container_name = "jobdescriptions"
# json_blob_name = f"{pdf_name}_jsondata.json"
pdf_blob_name_jobdescription = f"{pdf_name}.pdf"
container_client = blob_service_client.get_container_client(container_name)
# json_blob_client = container_client.get_blob_client(json_blob_name)
# json_blob_client.upload_blob(json_data.encode('utf-8'), overwrite=True)
pdf_blob_client = container_client.get_blob_client(pdf_blob_name_jobdescription)
pdf_blob_client.upload_blob(pdf_data_jobdescription, overwrite=True)
upload_job_db_item(pdf_name,len(pdf_data_cvs),json.loads(json_data),pre_generated_bool, custom_questions)
if pre_generated_bool:
for i,question in enumerate(custom_questions):
question_nr_for_id = i+1
question_id = pdf_name + "-question-nr-" + str(question_nr_for_id)+str(calendar.timegm(time.gmtime()))
upload_question_db_item(question_id, pdf_name, question,st.session_state["job_string"])
links = []
names = []
for i,cv in enumerate(pdf_data_cvs):
cv_nr_for_id = i+1
cv_session_state_string = "cv-"+str(cv_nr_for_id)
session_state_name = st.session_state["final_candidates"][i][0].metadata["name"]
names.append(session_state_name)
cv_id = pdf_name + "-cv-nr-" + str(cv_nr_for_id)+str(calendar.timegm(time.gmtime()))
upload_db_item(session_state_name, json.loads(json_data), pdf_name, cv_id)
pdf_blob_name_cv = f"{cv_id}.pdf"
pdf_blob_client = container_client.get_blob_client(pdf_blob_name_cv)
pdf_blob_client.upload_blob(pdf_data_cvs[i], overwrite=True)
links.append("https://tensora.ai/workgenius/cv-evaluation2/?job="+cv_id)
return links
except Exception as e:
print(f"Fehler beim Hochladen der Daten: {str(e)}")
return []
def upload_job_db_item(id, number_of_applicants, data, pre_generated_bool, custom_questions):
endpoint = "https://wg-candidate-data.documents.azure.com:443/"
key = os.getenv("CONNECTION_DB")
client = CosmosClient(endpoint, key)
database = client.get_database_client("ToDoList")
container = database.get_container_client("JobData")
job_item = {
"id": id,
'partitionKey' : 'wg-job-data-v1',
"title": data["title"],
"number_of_applicants": number_of_applicants,
"every_interview_conducted": False,
"evaluation_email": data["email"],
"question_one": data["question_one"],
"question_two": data["question_two"],
"question_three": data["question_three"],
"pre_generated": pre_generated_bool,
"custom_questions": custom_questions
}
try:
# Fügen Sie das Element in den Container ein
container.create_item(body=job_item)
print("Eintrag erfolgreich in die Cosmos DB eingefügt. Container: Job Data")
except exceptions.CosmosHttpResponseError as e:
print(f"Fehler beim Schreiben in die Cosmos DB: {str(e)}")
except Exception as e:
print(f"Allgemeiner Fehler: {str(e)}")
def upload_db_item(name, data, job_description_id, cv_id):
endpoint = "https://wg-candidate-data.documents.azure.com:443/"
key = os.getenv("CONNECTION_DB")
client = CosmosClient(endpoint, key)
database = client.get_database_client("ToDoList")
container = database.get_container_client("Items")
candidate_item = {
"id": cv_id,
'partitionKey' : 'wg-candidate-data-v1',
"name": name,
"title": data["title"],
"interview_conducted": False,
"ai_summary": "",
"evaluation_email": data["email"],
"question_one": data["question_one"],
"question_two": data["question_two"],
"question_three": data["question_three"],
"job_description_id": job_description_id,
}
try:
# Fügen Sie das Element in den Container ein
container.create_item(body=candidate_item)
print("Eintrag erfolgreich in die Cosmos DB eingefügt. Container: Items(candidate Data)")
except exceptions.CosmosHttpResponseError as e:
print(f"Fehler beim Schreiben in die Cosmos DB: {str(e)}")
except Exception as e:
print(f"Allgemeiner Fehler: {str(e)}")
def upload_question_db_item(id, job_id, question, job_content):
endpoint = "https://wg-candidate-data.documents.azure.com:443/"
key = os.getenv("CONNECTION_DB")
client = CosmosClient(endpoint, key)
database = client.get_database_client("ToDoList")
container = database.get_container_client("Questions")
question_item = {
"id": id,
"partitionKey" : "wg-question-data-v1",
"job_id": job_id,
"question_content": question,
"job_description": job_content,
}
try:
# Fügen Sie das Element in den Container ein
container.create_item(body=question_item)
print("Eintrag erfolgreich in die Cosmos DB eingefügt. Container: Questions(Question Data)")
except exceptions.CosmosHttpResponseError as e:
print(f"Fehler beim Schreiben in die Cosmos DB: {str(e)}")
except Exception as e:
print(f"Allgemeiner Fehler: {str(e)}")
st.markdown(
"""
<style>
[data-testid=column]{
text-align: center;
display: flex;
align-items: center;
justify-content: center;
}
h3{
text-align: left;
}
</style>
""",
unsafe_allow_html=True,
)
with open("sys_prompt_frontend.txt") as f:
sys_prompt = f.read()
with open("sys_prompt_job_optimization.txt") as j:
sys_prompt_optimization = j.read()
def adjust_numbering(lst):
return [f"{i + 1}. {item.split('. ', 1)[1]}" for i, item in enumerate(lst)]
def generate_candidate_mail(candidate, chat_link)-> str:
candidate_first_name = candidate[0].metadata["name"].split(" ")[0]
prompt = f"You are a professional recruiter who has selected a suitable candidate on the basis of a job description. Your task is to write two to three sentences about the applicant and explain why we think they are suitable for the job. The text will then be used in an e-mail to the applicant, so please address it to them. Please start the e-mail with 'Dear {candidate_first_name}'. I'll write the end of the mail myself."
try:
res = openai.ChatCompletion.create(
engine="gpt-4",
temperature=0.2,
messages=[
{
"role": "system",
"content": prompt,
},
{"role": "system", "content": "Job description: "+st.session_state["job_string"]+"; Resume: "+candidate[0].page_content}
],
)
# print(res.choices[0]["message"]["content"])
except Exception as e:
# Iterativ die Anfrage wiederholen und 200 Chars von hinten vom Resume weglassen
max_retries = 5
retries = 0
while retries < max_retries:
try:
# Reduziere die Länge des Resume um 200 Chars von hinten
candidate[0].page_content = candidate[0].page_content[:-200]
# Neue Anfrage senden
res = openai.ChatCompletion.create(
engine="gpt-4",
temperature=0.2,
messages=[
{
"role": "system",
"content": prompt,
},
{"role": "system", "content": "Job description: " + st.session_state["job_string"] + "; Resume: " + candidate[0].page_content}
],
)
# print(res.choices[0]["message"]["content"])
# Wenn die Anfrage erfolgreich ist, den Schleifen-Iterator beenden
break
except Exception as e:
# Bei erneuter Ausnahme die Schleife fortsetzen
retries += 1
if retries == max_retries:
# Falls die maximale Anzahl von Wiederholungen erreicht ist, handle die Ausnahme entsprechend
print("Max retries reached. Unable to get a valid response.")
return "The CV was too long to generate a Mail"
# Hier kannst du zusätzlichen Code für den Fall implementieren, dass die maximale Anzahl von Wiederholungen erreicht wurde.
# Optional: Füge eine Wartezeit zwischen den Anfragen hinzu, um API-Beschränkungen zu respektieren
time.sleep(1)
output_string = f"""{res.choices[0]["message"]["content"]}
We have added the job description to the mail attachment.
If you are interested in the position, please click on the following link, answer a few questions from our chatbot for about 10-15 minutes and we will get back to you.
Link to the interview chatbot: {chat_link}
Sincerely,
WorkGenius
"""
print("Mail generated")
return output_string
def generate_job_bullets(job)->str:
prompt = "You are a professional recruiter whose task is to summarize the provided job description in the most important 5 key points. The key points should have a maximum of 8 words. The only thing you should return are the bullet points."
try:
res = openai.ChatCompletion.create(
engine="gpt-4",
temperature=0.2,
messages=[
{
"role": "system",
"content": prompt,
},
{"role": "system", "content": "Job description: "+job}
],
)
# print(res.choices[0]["message"]["content"])
output_string = f"""{res.choices[0]["message"]["content"]}"""
# print(output_string)
return output_string
except Exception as e:
print(f"Fehler beim generieren der Bullets: {str(e)}")
def check_keywords_in_content(database_path, table_name, input_id, keywords):
# Verbindung zur Datenbank herstellen
conn = sqlite3.connect(database_path)
cursor = conn.cursor()
# SQL-Abfrage, um die Zeile mit der angegebenen ID abzurufen
cursor.execute(f'SELECT * FROM {table_name} WHERE id = ?', (input_id,))
# Ergebnis abrufen
row = cursor.fetchone()
# Wenn die Zeile nicht gefunden wurde, False zurückgeben
if not row:
conn.close()
print("ID not found")
return False
# Überprüfen, ob die Keywords in der Spalte content enthalten sind (case-insensitive)
content = row[1].lower() # Annahme: content ist die zweite Spalte, und wir wandeln ihn in Kleinbuchstaben um
keywords_lower = [keyword.lower() for keyword in keywords]
contains_keywords = all(keyword in content for keyword in keywords_lower)
# Verbindung schließen
conn.close()
return contains_keywords
def clear_temp_candidates():
if not st.session_state["final_candidates"]:
print("i am cleared")
st.session_state["docs_res"] = []
def load_candidates(fillup):
with st.spinner("Load the candidates, this may take a moment..."):
# print(st.session_state["job_string"])
filter_string = ""
query_string = "The following keywords must be included: " + text_area_params + " " + st.session_state["job_string"]
checked_candidates = []
db_path = 'cvdb.db'
table_name = 'files'
candidates_per_search = 100
target_candidates_count = 10
current_offset = 0
if st.session_state["screened"]:
filter_string = "amount_screenings gt 0 "
if st.session_state["handed"]:
if len(filter_string) > 0:
filter_string += "and amount_handoffs gt 0 "
else:
filter_string += "amount_handoffs gt 0 "
if st.session_state["placed"]:
if len(filter_string) > 0:
filter_string += "and amount_placed gt 0"
else:
filter_string += "amount_placed gt 0"
# print(filter_string)
if not fillup:
while len(checked_candidates) < target_candidates_count:
# # Führe eine similarity search durch und erhalte 100 Kandidaten
# if st.session_state["search_type"]:
# print("hybrid")
# # raw_candidates = st.session_state["db"].hybrid_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
# raw_candidates = st.session_state["db"].hybrid_search_with_score(query_string, k=candidates_per_search+current_offset, filters=filter_string)
# else:
# print("similarity")
# # raw_candidates = st.session_state["db"].similarity_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
# raw_candidates = st.session_state["db"].similarity_search_with_relevance_scores(query_string, k=candidates_per_search+current_offset, filters=filter_string)
#"Similarity", "Hybrid", "Semantic ranking"
if st.session_state["search_radio"] == "Similarity":
print("similarity")
# raw_candidates = st.session_state["db"].similarity_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
raw_candidates = st.session_state["db"].similarity_search_with_relevance_scores(query_string, k=candidates_per_search+current_offset, filters=filter_string)
elif st.session_state["search_radio"] == "Hybrid":
print("hybrid")
# raw_candidates = st.session_state["db"].hybrid_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
raw_candidates = st.session_state["db"].hybrid_search_with_score(query_string, k=candidates_per_search+current_offset, filters=filter_string)
elif st.session_state["search_radio"] == "Semantic ranking":
print("Semantic ranking")
print("Filter string"+filter_string)
print("query"+query_string)
print("offset: "+str(candidates_per_search+current_offset))
# raw_candidates = st.session_state["db"].hybrid_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
try:
raw_candidates = st.session_state["db"].semantic_hybrid_search_with_score_and_rerank(query_string, k=50, filters=filter_string)
except Exception as e:
print(f"Fehler beim laden der Kandidaten: {str(e)}")
raw_candidates = []
st.warning("Something went wrong. Please press 'Search candidates' again or reload the page.")
for candidate in raw_candidates[current_offset:]:
candidates_id = candidate[0].metadata["source"].split("/")[-1]
keyword_bool = check_keywords_in_content(db_path, table_name, candidates_id, text_area_params.split(','))
if keyword_bool:
checked_candidates.append(candidate)
# Überprüfe, ob die Zielanzahl erreicht wurde und breche die Schleife ab, wenn ja
if len(checked_candidates) >= target_candidates_count:
break
current_offset += candidates_per_search
if current_offset == 600:
break
# Setze die Ergebnisse in der Session State Variable
st.session_state["docs_res"] = checked_candidates
st.session_state["candidate_offset"] = current_offset
if len(checked_candidates) == 0:
st.error("No candidates can be found with these keywords. Please adjust the keywords and try again.", icon="🚨")
else:
# Setze die Zielanzahl auf 10
target_candidates_count = 10
current_offset = st.session_state["candidate_offset"]
# Solange die Anzahl der überprüften Kandidaten kleiner als die Zielanzahl ist
while len(st.session_state["docs_res"]) < target_candidates_count:
# Führe eine similarity search durch und erhalte 100 Kandidaten
if st.session_state["search_radio"] == "Similarity":
print("similarity")
# raw_candidates = st.session_state["db"].similarity_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
raw_candidates = st.session_state["db"].similarity_search_with_relevance_scores(query_string, k=candidates_per_search+current_offset, filters=filter_string)
elif st.session_state["search_radio"] == "Hybrid":
print("hybrid")
# raw_candidates = st.session_state["db"].hybrid_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
raw_candidates = st.session_state["db"].hybrid_search_with_score(query_string, k=candidates_per_search+current_offset, filters=filter_string)
elif st.session_state["search_radio"] == "Semantic ranking":
print("Semantic ranking")
print("Filter string"+filter_string)
print("query"+query_string)
print("offset: "+str(candidates_per_search+current_offset))
# raw_candidates = st.session_state["db"].hybrid_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
try:
raw_candidates = st.session_state["db"].semantic_hybrid_search_with_score_and_rerank(query_string, k=50, filters=filter_string)
except Exception as e:
print(f"Fehler beim laden der Kandidaten: {str(e)}")
raw_candidates = []
st.warning("Something went wrong. Please press 'Search candidates' again or reload the page.")
temp_offset_add = 0
for candidate in raw_candidates[current_offset:]:
candidates_id = candidate[0].metadata["source"].split("/")[-1]
keyword_bool = check_keywords_in_content(db_path, table_name, candidates_id, text_area_params.split(','))
if keyword_bool:
st.session_state["docs_res"].append(candidate)
temp_offset_add += 1
# Überprüfe, ob die Zielanzahl erreicht wurde und breche die Schleife ab, wenn ja
if len(st.session_state["docs_res"]) >= target_candidates_count:
st.session_state["candidate_offset"] = current_offset+temp_offset_add
break
current_offset += candidates_per_search
if current_offset == 900:
break
# Wenn die Liste immer noch leer ist, zeige eine Fehlermeldung an
if len(st.session_state["docs_res"]) == 0:
st.warning("No more candidates can be found.", icon="🔥")
if "similarity_search_string" not in st.session_state:
st.session_state["similarity_search_string"] = None
if "job_string" not in st.session_state:
st.session_state["job_string"] = None
if "docs_res" not in st.session_state:
st.session_state["docs_res"] = None
if "final_candidates" not in st.session_state:
st.session_state["final_candidates"] = None
if "final_question_string" not in st.session_state:
st.session_state["final_question_string"] = []
if "ai_questions" not in st.session_state:
st.session_state["ai_questions"] = None
if "raw_job" not in st.session_state:
st.session_state["raw_job"] = None
if "optimized_job" not in st.session_state:
st.session_state["optimized_job"] = None
if "candidate_offset" not in st.session_state:
st.session_state["candidate_offset"] = 0
if "db" not in st.session_state:
embedder = OpenAIEmbeddings(deployment="embedding", chunk_size=1)
embedding_function = embedder.embed_query
db = AzureSearch(
index_name="wg-cvs-data",
azure_search_endpoint=os.environ.get("AZURE_SEARCH_ENDPOINT"),
azure_search_key=os.environ.get("AZURE_SEARCH_KEY"),
embedding_function=embedding_function,
# fields=fields
)
st.session_state["db"] = db
col1, col2 = st.columns([2, 1])
col1.title("Candidate Search")
col2.image("https://www.workgenius.com/wp-content/uploads/2023/03/WorkGenius_navy-1.svg")
st.write("Please upload the job description for which you would like candidates to be proposed.")
uploaded_file_jobdescription = st.file_uploader("Upload the job description:", type=["pdf"], key="job")
# col_file, col_clear = st.columns([6,1])
# with col_file:
# uploaded_file_jobdescription = st.file_uploader("Upload the job description:", type=["pdf"], key="job")
# with col_clear:
# if st.button("Clear", use_container_width=True):
# streamlit_js_eval(js_expressions="parent.window.location.reload()")
if st.session_state["job"]:
if not st.session_state["job_string"]:
if not st.session_state["optimized_job"]:
with st.spinner("Optimizing the job description. This may take a moment..."):
pdf_data_jobdescription = st.session_state["job"].read()
pdf_data_jobdescription_string = ""
pdf_reader_job = PdfReader(io.BytesIO(pdf_data_jobdescription))
for page_num in range(len(pdf_reader_job.pages)):
page = pdf_reader_job.pages[page_num]
pdf_data_jobdescription_string += page.extract_text()
# st.session_state["pdf_data_jobdescription"] = pdf_data_jobdescription activate and add sessio state if data is needed
system_prompt_job = sys_prompt_optimization.format(job=pdf_data_jobdescription_string)
try:
res = openai.ChatCompletion.create(
engine="gpt-4",
temperature=0.2,
messages=[
{
"role": "system",
"content": system_prompt_job,
},
],
)
# print(res.choices[0]["message"]["content"])
output_string = f"""{res.choices[0]["message"]["content"]}"""
st.session_state["optimized_job"] = output_string
st.rerun()
except Exception as e:
print(f"Fehler beim generieren der optimierten JD: {str(e)}")
st.error("An error has occurred. Please reload the page or contact the admin.", icon="🚨")
# st.session_state["job_string"] = pdf_data_jobdescription_string
# print(output_string)
st.text_area("This is the AI-generated optimized job description. If necessary, change something to your liking:", value=st.session_state["optimized_job"], height=700, key="optimized_job_edited")
if st.button("Accept the job description"):
st.session_state["job_string"] = st.session_state["optimized_job_edited"]
st.rerun()
# st.write("Switch from a similarity search (default) to a hybrid search (activated)")
# st.toggle("Switch Search", key="search_type")
st.radio("Select a search variant",options=["Similarity", "Hybrid", "Semantic ranking"], key="search_radio",on_change=clear_temp_candidates)
st.write("Activate the following toggles to filter according to the respective properties:")
col_screening, col_handoff, col_placed = st.columns([1,1,1])
with col_screening:
st.toggle("Screened", key="screened")
with col_handoff:
st.toggle("Handed over", key="handed")
with col_placed:
st.toggle("Placed", key="placed")
text_area_params = st.text_area(label="Add additional search parameters, which are separated by commas (e.g. master, phd, web developer, spanish)")
submit = st.button("Search candidates",disabled= True if st.session_state["final_candidates"] else False)
if not st.session_state["job"] and submit:
st.error("Please upload a job description to search for candidates")
if st.session_state["docs_res"] and submit:
load_candidates(False)
if (st.session_state["job_string"] and submit) or st.session_state["docs_res"]:
# if not st.session_state["job_string"]:
# pdf_data_jobdescription = st.session_state["job"].read()
# pdf_data_jobdescription_string = ""
# pdf_reader_job = PdfReader(io.BytesIO(pdf_data_jobdescription))
# for page_num in range(len(pdf_reader_job.pages)):
# page = pdf_reader_job.pages[page_num]
# pdf_data_jobdescription_string += page.extract_text()
# # st.session_state["pdf_data_jobdescription"] = pdf_data_jobdescription activate and add sessio state if data is needed
# st.session_state["job_string"] = pdf_data_jobdescription_string
if not st.session_state["docs_res"]:
load_candidates(False)
if not st.session_state["final_candidates"]:
for i,doc in enumerate(st.session_state["docs_res"]):
# print(doc)
cols_final = st.columns([6,1])
with cols_final[1]:
if st.button("Remove",use_container_width=True,key="btn_rm_cv_row_"+str(i)):
# st.write(doc.page_content)
st.session_state["docs_res"].pop(i)
st.rerun()
with cols_final[0]:
# st.subheader(doc.metadata["source"])
if st.session_state["search_radio"] == "Similarity":
with st.expander(doc[0].metadata["name"]+" with a similarity percentage of: "+str(round(doc[1] * 100, 3))+ "%"):
st.write(doc[0].page_content)
elif st.session_state["search_radio"] == "Hybrid":
with st.expander(doc[0].metadata["name"]+" with a hybrid search score of: "+str(round(doc[1] * 100, 3))):
st.write(doc[0].page_content)
elif st.session_state["search_radio"] == "Semantic ranking":
with st.expander(doc[0].metadata["name"]+" with a rerank score of: "+str(round(doc[2] * 100, 3))):
st.write(doc[0].page_content)
if len(st.session_state["docs_res"])>=10:
if st.button("Accept candidates", key="accept_candidates_btn"):
print("hello")
st.session_state["final_candidates"] = st.session_state["docs_res"].copy()
st.rerun()
else:
col_accept, col_empty ,col_load_new = st.columns([2, 3, 2])
with col_accept:
if st.button("Accept candidates", key="accept_candidates_btn"):
print("hello")
st.session_state["final_candidates"] = st.session_state["docs_res"].copy()
st.rerun()
with col_load_new:
if st.button("Load new candidates", key="load_new_candidates"):
print("loading new candidates")
load_candidates(True)
st.rerun()
else:
print("Now Questions")
st.subheader("Your Candidates:")
st.write(", ".join(candidate[0].metadata["name"] for candidate in st.session_state["final_candidates"]))
# for i,candidate in enumerate(st.session_state["final_candidates"]):
# st.write(candidate.metadata["source"])
cv_strings = "; Next CV: ".join(candidate[0].page_content for candidate in st.session_state["final_candidates"])
# print(len(cv_strings))
system = sys_prompt.format(job=st.session_state["job_string"], resume=st.session_state["final_candidates"][0][0].page_content, n=15)
if not st.session_state["ai_questions"]:
try:
# st.write("The questions are generated. This may take a short moment...")
st.info("The questions are generated. This may take a short moment.", icon="ℹ️")
with st.spinner("Loading..."):
res = openai.ChatCompletion.create(
engine="gpt-4",
temperature=0.2,
messages=[
{
"role": "system",
"content": system,
},
],
)
st.session_state["ai_questions"] = [item for item in res.choices[0]["message"]["content"].split("\n") if len(item) > 0]
for i,q in enumerate(res.choices[0]["message"]["content"].split("\n")):
st.session_state["disable_row_"+str(i)] = False
st.rerun()
except Exception as e:
print(f"Fehler beim generieren der Fragen: {str(e)}")
st.error("An error has occurred. Please reload the page or contact the admin.", icon="🚨")
else:
if len(st.session_state["final_question_string"]) <= 0:
for i,question in enumerate(st.session_state["ai_questions"]):
cols = st.columns([5,1])
with cols[1]:
# if st.button("Accept",use_container_width=True,key="btn_accept_row_"+str(i)):
# print("accept")
# pattern = re.compile(r"^[1-9][0-9]?\.")
# questions_length = len(st.session_state["final_question_string"])
# question_from_text_area = st.session_state["text_area_"+str(i)]
# question_to_append = str(questions_length+1)+"."+re.sub(pattern, "", question_from_text_area)
# st.session_state["final_question_string"].append(question_to_append)
# st.session_state["disable_row_"+str(i)] = True
# st.rerun()
if st.button("Delete",use_container_width=True,key="btn_del_row_"+str(i)):
print("delete")
st.session_state["ai_questions"].remove(question)
st.rerun()
with cols[0]:
st.text_area(label="Question "+str(i+1)+":",value=question,label_visibility="collapsed",key="text_area_"+str(i),disabled=st.session_state["disable_row_"+str(i)])
st.write("If you are satisfied with the questions, then accept them. You can still sort them afterwards.")
if st.button("Accept all questions",use_container_width=True,key="accept_all_questions"):
for i,question in enumerate(st.session_state["ai_questions"]):
pattern = re.compile(r"^[1-9][0-9]?\.")
questions_length = len(st.session_state["final_question_string"])
question_from_text_area = st.session_state["text_area_"+str(i)]
question_to_append = str(questions_length+1)+"."+re.sub(pattern, "", question_from_text_area)
st.session_state["final_question_string"].append(question_to_append)
st.session_state["disable_row_"+str(i)] = True
st.rerun()
for i,final_q in enumerate(st.session_state["final_question_string"]):
cols_final = st.columns([5,1])
with cols_final[1]:
if st.button("Up",use_container_width=True,key="btn_up_row_"+str(i),disabled=True if i == 0 else False):
if i > 0:
# Tausche das aktuelle Element mit dem vorherigen Element
st.session_state.final_question_string[i], st.session_state.final_question_string[i - 1] = \
st.session_state.final_question_string[i - 1], st.session_state.final_question_string[i]
st.session_state.final_question_string = adjust_numbering(st.session_state.final_question_string)
st.rerun()
if st.button("Down",use_container_width=True,key="btn_down_row_"+str(i), disabled=True if i == len(st.session_state["final_question_string"])-1 else False):
if i < len(st.session_state.final_question_string) - 1:
# Tausche das aktuelle Element mit dem nächsten Element
st.session_state.final_question_string[i], st.session_state.final_question_string[i + 1] = \
st.session_state.final_question_string[i + 1], st.session_state.final_question_string[i]
st.session_state.final_question_string = adjust_numbering(st.session_state.final_question_string)
st.rerun()
with cols_final[0]:
st.write(final_q)
if len(st.session_state["final_question_string"])>0:
st.text_input("Enter the email address to which the test emails should be sent:",key="recruiter_mail")
st.text_input("Enter the phone number to which the test SMS should be sent (With country code, e.g. +1 for the USA or +49 for Germany):",key="recruiter_phone")
st.text_input("Enter the job title:", key="job_title")
if st.button("Submit", use_container_width=True):
with st.spinner("Generation and dispatch of mails. This process may take a few minutes..."):
sg = sendgrid.SendGridAPIClient(api_key=os.environ.get('SENDGRID_API'))
# Sender- und Empfänger-E-Mail-Adressen
sender_email = "[email protected]"
receiver_email = st.session_state["recruiter_mail"]
print(receiver_email)
subject = "Mails for potential candidates for the following position: "+st.session_state["job_title"]
message = f"""Dear Recruiter,
enclosed in the text file you will find the e-mails that are sent to the potential candidates.
The subject of the mail would be the following: Are you interested in a new position as a {st.session_state["job_title"]}?
Sincerely,
Your Candidate-Search-Tool
"""
# SendGrid-E-Mail erstellen
message = Mail(
from_email=sender_email,
to_emails=receiver_email,
subject=subject,
plain_text_content=message,
)
data = {
"title": st.session_state["job_title"],
"email": st.session_state["recruiter_mail"],
"question_one": "",
"question_two": "",
"question_three": "",
}
json_data = json.dumps(data, ensure_ascii=False)
# Eine zufällige UUID generieren
random_uuid = uuid.uuid4()
# Die UUID als String darstellen
uuid_string = str(random_uuid)
pdf_name = uuid_string
cvs_data = []
temp_pdf_file = "candidate_pdf.pdf"
for candidate in st.session_state["final_candidates"]:
styles = getSampleStyleSheet()
pdf = SimpleDocTemplate(temp_pdf_file)
flowables = [Paragraph(candidate[0].page_content, styles['Normal'])]
pdf.build(flowables)
with open(temp_pdf_file, 'rb') as pdf_file:
bytes_data = pdf_file.read()
cvs_data.append(bytes_data)
os.remove(temp_pdf_file)
candidate_links = upload_blob(pdf_name, json_data, st.session_state["job"].read(),cvs_data,True,st.session_state["final_question_string"])
mail_txt_string = ""
for i, candidate in enumerate(st.session_state["final_candidates"]):
if i > 0:
mail_txt_string += "\n\nMail to the "+str(i+1)+". candidate: "+candidate[0].metadata["name"]+" "+candidate[0].metadata["candidateId"]+" \n\n"
else:
mail_txt_string += "Mail to the "+str(i+1)+". candidate: "+candidate[0].metadata["name"]+" "+candidate[0].metadata["candidateId"]+" \n\n"
mail_txt_string += generate_candidate_mail(candidate,candidate_links[i])
# Summary in eine TXT Datei schreiben
mail_txt_path = "mailattachment.txt"
with open(mail_txt_path, 'wb') as summary_file:
summary_file.write(mail_txt_string.encode('utf-8'))
# Resume als Anhang hinzufügen
with open(mail_txt_path, 'rb') as summary_file:
encode_file_summary = base64.b64encode(summary_file.read()).decode()
summary_attachment = Attachment()
summary_attachment.file_content = FileContent(encode_file_summary)
summary_attachment.file_name = FileName('candidate_mails.txt')
summary_attachment.file_type = FileType('text/plain')
summary_attachment.disposition = Disposition('attachment')
message.attachment = summary_attachment
try:
response = sg.send(message)
print("E-Mail wurde erfolgreich gesendet. Statuscode:", response.status_code)
os.remove("mailattachment.txt")
except Exception as e:
print("Fehler beim Senden der E-Mail:", str(e))
st.error("Unfortunately the mail dispatch did not work. Please reload the page and try again or contact the administrator. ", icon="🚨")
try:
bullets = generate_job_bullets(st.session_state["job_string"])
client = Client(os.getenv("TWILIO_SID"), os.getenv("TWILIO_API"))
message_body = f"Dear candidate,\n\nare you interested in the following position: \n"+st.session_state["job_title"]+"\n\n"+bullets+"\n\nThen please answer with 'yes'\n\nSincerely,\n"+"WorkGenius"
message = client.messages.create(
to=st.session_state["recruiter_phone"],
from_="+1 857 214 8753",
body=message_body
)
print(f"Message sent with SID: {message.sid}")
st.success('The dispatch and the upload of the data was successful')
except Exception as e:
st.error("Unfortunately the SMS dispatch did not work. Please reload the page and try again or contact the administrator. ", icon="🚨")
print("Fehler beim Senden der SMS:", str(e))
|