tensorgirl commited on
Commit
1c2a153
·
verified ·
1 Parent(s): 6ea9abd

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -42
app.py DELETED
@@ -1,42 +0,0 @@
1
- import os
2
- import json
3
- import gradio as gr
4
- import google.generativeai as genai
5
-
6
- GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
7
- genai.configure(api_key=GOOGLE_API_KEY)
8
-
9
- # Set up the model
10
- generation_config = {
11
- "temperature": 0.9,
12
- "top_p": 1,
13
- "top_k": 1,
14
- "max_output_tokens": 2048,
15
- }
16
-
17
-
18
- model = genai.GenerativeModel(
19
- model_name="gemini-pro",
20
- generation_config=generation_config,
21
- )
22
-
23
- task_description = " You need to classify each message you receive among the following categories: 'admiration','amusement','anger','annoyance','approval','caring','confusion','curiosity','desire','disappointment','disapproval','disgust','embarrassment','excitement','fear','gratitude','grief','joy','love','nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'<div>The output must be in JSON format</div>"
24
-
25
-
26
- def classify_msg(message):
27
- prompt_parts = [
28
- task_description,
29
- f"Message: {message}",
30
- "Category: ",
31
- ]
32
-
33
- response = model.generate_content(prompt_parts)
34
-
35
- json_response = json.loads(
36
- response.text[response.text.find("{") : response.text.rfind("}") + 1]
37
- )
38
-
39
- return gr.Label(json_response['category'])
40
-
41
- iface = gr.Interface(fn=classify_msg, inputs="text", outputs="text")
42
- iface.launch()