import gradio as gr import os import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from sklearnex import patch_sklearn, unpatch_sklearn patch_sklearn() import xgboost as xgb import keras_nlp preprocessor = keras_nlp.models.GemmaPreprocessor.from_preset( "gemma_2b_en", sequence_length=64 ) model = keras_nlp.models.GemmaBackbone.from_preset("gemma_2b_en") def greet(name): x = preprocessor(name) lab = model(x) return lab iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch()